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PREFACE.

N\
¢(\N

THE more precise definitions and more rigorons metgl;oli; of
demonstration developed by modern mathematics axfe"l‘boked
upon by the mass of gymnasium professors a.s‘al}s'tmse and
excessively abstraet, and accordingly as of impSrtance only
for the small circle of specialists. With a.:vﬁv} to counteract-
ing this tendency it gave me pleasure to@eb forth last summer
in a brief course of lectures before :a:’iarger audience than
usual what modern seience has to sa:jr;regarding the possibility
of elementary geometric constm({t;ions. Some time before, I
had had occasion to present a Sketch of these lectures in an
Easter vacation courseogtt\’i}bttingen. The audience seemed
to take great interestxin them, and this impression has been
eonfirmed by the experience of the swinmer semester, I ven-
ture therefore topresent a short exposition of my lectures o
the Associa@@@fﬁr the Advancement of the Teaching of Math-
ematics a:r@tlie Natural Sciences, for the meeting to be held at
Guttingen: This exposition has been prepared by Oberlehrer
Tagett; of Fans, who attended the vacation course just men-
_ tionéd. He also had at his disposal the lecture notes written
out under my supervision by several of my summer semester
students. T hope that this unpretending little book may con-
tribute to promote the useful work of the association.

¥. KLEIN.
GoTTINGEN, Easter, 1805,






TRANSLATORS’ PREFACE.
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Az the Gottingen meeting of the German Assogiation for
the Advancement of the Teaching of Mathematies and the
Natural Sciences, Professor Felix Klein pregented a discus-
sicn of the three famous geometric probkéms of antiquity,
— the duplication of the cube, the trﬂectlon of an angle,
and the quadrature of the circle, a8 ﬂewed in the light of
modern research. \\

This was done with the aww’ed purpose of bringing the
study of mathematics in the 'umverslty into closer touch with
the work of the gymna,gxgm That Professor Klein is likely
to succeed in this e agt 18 shown by the favorable reception
accorded his lectures by the association, the uniform commen-
dation of the eddeational journals, and the fact that transla-
tions into Fr’éneh aud Italian have already appearsd.

The tre\atment of the subject is elemeutary, not even a
knowledga of the differential and integral calculus being
l‘eqali\red Awmong the questions aniswered are such as these:
Upder what circumstances is a geometrie construction pos-
sible? By what means can it be effected? What are tran-
scendental numbers? How can we prove that e and = are
transcendental ?

With the belief that an English presentation of so impor-
tant & work would appeal to many unable to read the original,




vi TRANSLATOR'S PREFACK.

Professor Klein’s consent to a translation was sought and
readily secured.

In its preparation the authors have also made free use of
the French translation by Professor J. Griess, of Algiers,
following its modifications where it seemed advisable. I\

They desire further to thank Professor Ziwet for asgists
ance in improving the translation and in reading the,.p}x"\ﬁbﬂ

sheets, W\
W. W. BEMAN,
August, 1897. D. "1‘{(§MITH,
AS
N
:’\ -4



EDITOR’S PREFACE,

-

Within three years of its publication thirty-five years

ago Klein’s little work was translated into tinglish, Frenchy, .

Italian, and Russian'. In the United States it filled a depided
need for many years, and not a few teachers regretted
that the work was allowed to go out of print, Ao ‘other
work supplied in such compact form just the-fuformation
here found. Hence it seemed desirable toMiave a new
edition with at least some of the slips of\bhe first edition
rectified, and with added notes iilumipa‘jsiﬁg the text.

The eorrections and notes of tlie“present edition are
little more than revised extractsftom my article in The
American Mathematival Monthiy%s 1914. I am indebted to
the Kditors for eourteouslygllowing the reproduction of

this material. A
» R. C. A.

February, 1930, . L\

X/

xt\w
:"\".

o/

! Freuch translation by Griess, Paris, Nony, 1396; Italian by Giudice,
Tarin, Roscnberg e Sallier, $8396; Russian by Parfentiev and Sintsov,
Kazan, 1888, 'Fhis last translation secms to have been unkriown to the
editors of Klein’s Abhandlungen {sea v. 8, 1823, p. 28).

® Remarks cn Klein’s “Famous Problems of Elementary Geomelry™,
v. 21, p. 247 —250,

N






CONTENTS.

gl

\\,
INTRODUCTION, \ N
% N\ FAGE
Pracrrcar anm THEORETICAL CONRTRUCTIONS . LN 2
STArEMENT OF THE PROBLEM IN ALGEBRAIC Fomrm . .’.\". . 3
"
PART I

Y

The Possibility of the Construction of A{ia\braic Expresaions.
CaaerteEr £ Avcearaic EQuaTiows buu .w’L.E 1y Sgquare Roots.

14, Strocture of the expression x to ‘be ‘Gongtructed . .
8, 8, Normal formof x . .,3. . . . .
7, 8. Conjugate values . . O\ .
2. The corresponding equatwn F(x) =0 . . . .
16. Other rational equations f(x) = o .
11, 12, The irreducible eq’(ia.\lon )=c

13, 14. The degree of ‘t@a irreducibie equation a power of 3

Lol ==+ =N = RS - ]

—

Crasrrer I Txm nEL‘IAN ProgreM AND THE TRISECTION OF THE

& } ANGLE.
1L Th&imposslh'lity of solving the Delian problem with straght
‘edge and compasses . . . . . . . 13
24 "ﬁe general equation x8= A . .. 13
3 "The impossibility of trisecting an :mgle w1t.h st.r'ught edge
N\ ~~" and compasses . . . . . . 14

\/

Cuaprer IIL Tre Division or tae Cirers ixro Eoual Pamis,

1. History of the problem . . .- e . .18
2-4. Gauss's prime numbers . . . . . . . 17
. B. The cyclotomic equation . . . . . . . 19

8. Gauss's Lemms, . . . . . 19

7, 8. The irreducibility of the cyclotomie eqﬂat.wn 1 |



£ CONTENTS,

Cuarrzz IV, Tug CUNSTRUCTION OF THE fecvrar PoLygon or

17 Sipes.

FAGE
1. Algebraic statement of the problem . . . . . 24
2-4. The periods formed from the roots . . . . - 26
6, 6, The quadratic equations eatisfied by the perioda . . 27

7. Historical account of constructions with straight edge and
compasses . . . . . . . A 32
8, 9. Von Staudt’s construction of the regular polygon of 17 aideg\' \J34
Caarrer V. GENERaL CoNsipERATIONS ON Ararsrarc CorSrROCTIONS,
1. Pzper folding - e . A S & . 42
2. The conic sections . . . . R\ 2 . 42
3. The Cissoid of Diocles . . . . N\ . .M
& The Conchoid of Nlcomedes . . v . 4
§. Mechanical devices . . X\ . . . 47

PART JF
Tramscendental! Numbers andtha Quadrature of the Circle.
Coaprur I mepn’s ngoﬁérnszox OF THE EXiSTENCE OF
TrANECENDENTAL Nuszgns,
¢\J

1. Definition of algebraic and of transcendentsl numbers 49
2. Arrangementief algebraic numbers according to height 50

3. Demonstr{tion of the existence of transcendental numbers 63

Crarren Ikmmron:can Sunver or THE ATTEMPTS AT THE Com-

:§ w/  PUTATION AND Cowsrrucrion or .
L\The empirical stage . | . - . bé
2" The Greek Mathematiclans . | . b6
\ 3. Modern analysis from 1670 o . . . . g8
4, 5. Revival of eritical Tigor since 1770 | . . . . 59

Ciarren 1M1, Ty TRANSCENDENCE oF THE NUMBER e,

1. Outline of the demonstration . . . . . Bl
2. The symbol hr angd the function ¢(x) <« .. 62
3. Hermite's Theorem . . . . 85

Q



CONTENTS. _ xi

Craprer IV. T'HE TEANSCENDENCE oF THE NyMMBER x,

Facu
1. Outline of the demonstration . . . . . . 63
2. The function y¢(x) . . . . .. . . T0
2. Lindemann's Theorem . . . . . . . 73
4. Lindemann’s Corollary . . . . . . . T4
5. The transcendence of » . .. ; ; . 76 {\
6. The transcendence of y = ex , . . . . . . l:\
7. The transcendence of y = sin=lx . NID
:"S\ ”
« \.
Onarrer V. TRE INTEGRAPH AXD TRE (EOMETRIC Coxsg«.&gnon
OF . 72 \ I
&
-1. The impossibility of the quadrature of the circlé@ straight
edge and compasses . :& . . . 718
2. Principls of the integraph . . '\\' . . . 78
3. Geometric construction of + . . . “}' v .79
¥
Nores . . . . . &Y. . . . . . s
G\X
A )
L\
:\
o"‘\")
b Y
»
t:s,z..,
\V
Y../






INTRODUCTION.

N
e ’\‘.\

O

Tu1s course of lectures is due to the desire on my\part to
bring the study of mathematics in the universitylinto closer
touch with the needs of the secondary schools: \S#ll it is not
intended for beginners, since the matters undes discussion are
treated from a higher standpoint than that of the schools.
On the other hand, it presupposes but little preliminary work;
only the elements of analysis being, tequired, as, for example,
in the development of the exponential function into a series.

We propose to treat of geomptrical constructions, and our
object will not be so much/to find the solution suited to each
case as to determine phe possibility or impossibility of a
solution. : \ud

Three problems,’the object of much research in ancient
times, will prove%o be of special interest. They are

1. The pmble\m of the duplication of the eube (also called
the Deligaproblem).

2. .’{‘Jé}i trisection of an arbitrary angle.

B.(The quadrature aof the cirels, i.e., the construction of .

\Il:: all these problems the ancients sought in vain for a
solution with straight edge and compasses, and the celebrity
of these problems is due chiefly to the fact that their solution
seemed to demand the use of appliances of a higher order.
In fact, we propose to show that a solution by the use of
straight edge and compasses is impossible.



2 INTRODUCTION.

The impossibility of the solution of the third problem was
demonstrated only very recently. That of the first and second
is implicitly involved in the Galois theory as presented to-day
in treatises on higher algebra. On the other hand, we find
1o explicit demonstration in elementary form unless it bed
Petersen’s text-books, works whieh are also noteworthy- in
other respects, \\

At the outset we must insist upon the difference. between

- practical and theoretical constructions, For exa‘.mi)le, if we
need a divided circle as a measuring instrun}eﬁt',' we construct
it simply on trial. Theoretically, in edrhigr times, it was
possible (i.e., by the use of straight edgelanid compasses) only
to divide the circle into a number Of “parts represented by
2% 3, and 5, and their products.\@auss added other cases
by showing the possibility of the “division into parts where
P is a prime number of the furm p=2% 41, and the impos-
sibility for all other numbers. No practical advantage is
derived from these results; ze significance of Gauss's de
velopments is purely theoretical. The same is true of all the
discussions of the gresent course,

Our fundameital problem may be stated : What geometrical
constructions, gre, and what are not, theoretically possible? To
define sharply the meaning of the word ¢ construction,” we

must designate the instruments which we propose to use in
each.oase. We shall consider

3 Straight edge and compasses,
Y2 Compasses alone,
3. Btraight edge alone,
4. Other instruments

used in connection with straight edge
and compasges,

The singular thing is that
no answer to the question,
and the higher analysis,

elementary geometry furnishes
We must fall back upon algebra
The question then arises: How
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shall we use the language of these sciences to express the
employment of straight edge and compasses? This new
method of attack is rendered necessary because elementary
geometry possesses no general method, no algorithm, as do
the last two sciences.

In analysis we have first rational operations: addition,
subtraction, multiplication, and division. These opera.’@o‘ns
can be directly effected geometrically upon two giveh-seg-
ments by the aid of proportions, if, in the case of mulhphca-
tion and division, we introduee an auxiliary unitségment.

Further, there are irrational operations,subdivided into
algebraic and transcendental. The simplest algebraic opera-
tions are the extraction of square aud‘\lug er roots, and the
solution of algebraic equations not golvable by radicals, such
as those of the fifth and higher degrees As we know how to
construct /ab, rational Operabwns in general, and irrational
operations involving only squale roots, can be constructed.
On the other hand, every sadividual geometrical construction
which can be reduced-$o' the intersection of two straight
lines, a straight linddnd a circle, or two circles, is equivalent
to & rational operghion or the extraction of a square root. In
the higher irrational operations the eonstruction is therefore
impossible, wnless we can find a way of effecting it by the aid
of square 7dots. In all these constructions it is obvious that
the nupiber of operations must be limited.

We may therefore state the following fundamental theorem :

necessary and sufficient condition that an analy ytic expres-
sion can be constructed with straight edge and compasses is that
it can be derived Jrom the known quantities by a finite number
of rvational eperations and square roots.

Accordingly, if we wish to show that a quantity cannot be
constructed with straight edge and compasses, we must prove
that the corresponding equation is not solvable by a finite
humber of square roots.
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4 fortiori the solution is impossible when the problem
has no corresponding algebraic equation. An expression
which satisfies no algebraic equation is called a franscenden-
tal number. This cage oceurs, as we ghall show, with ghe

number 7, \‘/\\
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PART 1

THE POSSIBILITY OF THE CONSTRUCTION
OF ALGEBRAIC EXPRESSIONS

CHAPTER 1
R
Algebraic Equations Solvable by Square Roota,

The following propositions taken from th‘e\ theory of alge-
braie equations are probably known ﬁ(‘i}thﬁ reader, yet to
secure greater clearness of view we_shall give brief demon-
strations. N

If x, the quantity to be const;-gwféé?, depends only upon rational
expressions and square roots, #6%s a root of an irreducible equa-
tion ¢ (x) =0, whose degre€ is ahways a power of 2.

+8 )

1. To get a clear idea of the structure of the quantity x,
suppose it, e.g., of (the form
PN\
Mt VeFet+/d+ Vb ptYg
N Va+ b Jr

""he}'s{fa’," b, ¢, d, e, f, p, q, r are rational expressions.

2} The number of radicals one over another occurring in
any term of x is called the order of the term ; the preceding
expression contains terms of orders 0, 1, 2.

3. Let u designate the shaximum order, so that no ferm
¢an Liave more than u radicals one aver another.
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4. In the example x = V2+ V34 V6, we have three
expressions of the first order, but as it may be written

x=v24 V3 3. V3,

it really depends on only two distinet expressions.

\

We shall make the same Stpposition regarding tarms of
the order w—1 or of lower order, whether these’ occur ex-
plicitly or implicitly, Thig bypothesiz is obviously a very
natural one and of great importance in latQ discussions,

(N

5. Normar Form op x "N

If the expression x is a sum of ters with different denom-
inators we may reduce them to phé same denominator and
thus obtain x as the quotient oft j;wb integral funetions,

Suppose VQ one of the teins of x of order g ; it can occur
in x only explicitly, since™ is the maximum order. Since,
further, the powers of O nay be expressed as functions of

Q and Q, which isaterm of lower order, we may put

x=2+tbVQ

C c+d \/6'
where a, byci’d contain ng more than n— 1 terms of order g,
besides térts of lower order,

Mulsiplying both terms of tlie fraction by ¢ —d vVQ, VQ

digappears from the denominator, and we may write

x = (3¢ = bdQ) + (be — ad) /3
cfﬂd%?\&:u_h@@’

¥/
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The x may, therefore, be transformed so as to contain a term
of given order p only in its numerator and there only linearly.

We observe, however, that products of terms of order u
may occur, for « and 8 still depend upon n—1 terms of order .
#  We may, then, put

a == ap + a2 VQy, B= B+ B VQ,

and hence : \
X= (Gu + e \/Qf) + (Bn + Bis \/Ql) '\/Q ;’\ e

6. We proceed in a similar way with the differeit'terms
of order u— 1, which ocenr explicitly and in Qj @, ete., so
that each of these quantities becomes an integral/linear func-
tion of the term of order u—1 under conmderatmn We
then pass on o terms of lower order a.uq;fina,lly obtain x, or
rather its terms of different orders, under the form of rational
~ integral linear functions of the indivitual radical expressions
which oceur explicitly. We then‘say that x is reduced to

the normal form. 3 :.’

N

7. Let m be the total’ number of independent (4) square
Toots oeenrring in thi s\norma,l form., Giving the double sign
to these square rogts and combining them in all possible ways,
we obtain 3 sys;tg\am"bf 2= values -

3

.’\" Xy Xgg v = =+ xgmg

which wQshall call confugate values.
Wesinust now investigate the equation admitting these
GQIlali‘ga.te values as roots.

8, These values are not necessarily all distinet; thus, if

we have x:\/a+«f5+\/a—\/5,

this expression is not changed when we change the gign of

Vb.
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9, If x is an arbitrary quantity and we form the poly-
nomial

F(x)-——"(x——x;) (x—xg) ... (x = X,m),

F(x)=0 is clearly an equation having as roots these con-
jugate values. It is of degree 2= hut may have equal
roots (8).

The coefficients of the polynomial F (x) arranged with ?:?6.}?003
o X are rational, O

_ gn of one of the square regts ; this
will permute two roots, say x, and Xy, sinee the Toots of
F(x) =0 are precisely all the conjugate va.}u:bs. As these
Toots enter F (x) only under the form of theproduct

x.\\.
(x— X (x — Xa');'\ &
e merely change the order of thexfagtors of F(x). Hence
the polynomial is not changed. | ™
F (x) remains, then, invariabléwhen we change the sign of
any one of the square roots ;I therefore contains only their
Squares ; and henee F {x).has 'only rational coefficients.

equation with ratiomel éoaﬁcabnts, ()=
all the others, O
f(x) is not; Uecessarily equal to F (x),
roots besides.the x.s, _
Let x\%§&'+ BVQ be one of the conjugate values i VQ a
term of oider u 3 o ang B now depend only upon other terms

of otder 4 and terms of lower order. There must, then, he a
/eQnjtigate value
\ ) 4

10. Whken any onﬁ?} the conjugate values satisfies o given
0, the same is true of

and may admit other

%'=a—g/Q,

the equation Fx)=0. f (x1) may be put
™ with respect to

f)=a+8vy,

Let us now form
into the normal for
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this expression can equal zero only when A and 8 are simul-
taneously zero. Otherwise we should have
= A
VQ=— B
i.e., VQ could be expressed rationaily as a function of terms
of order x and of terms of lower order contained in A and B,
which is contrary to the hypothesis of the 1ndependenee of
all the square roots (4). A
But we evidently have \ .

f()=A—BVQ;

henee if f(x,) =20, so also f (x,) ==0. Whenge' the following
proposition :

If' x; satisfies the equation f(x) =0, ¢ ﬁme is true of all
the conjugate values derived from x, bg changing the signs of
the rovts of order u.

The proof for the other ccn;ugate values is obtained in an
analogous manner. Suppose, for example, as may be done
without affecting the genera,hty of the reasoning, that the
expression x, depends on\only two terms of order p, VO Q and
V@ f (%) may be \Reduced to the following normal form :

(@ f(xl)"p4q\/Q+r~f5+s\fQ VQ'=0.
If x, depe ad on more than two terms of order y, we should
only have to add to the preceding expression a greater num-

ber of terms of analogous structure.
E{l\’latlon (@) is possible only when we have separately

\(\3!) p=0, q=0, r=0, s=0

Otherwigs +/ Q_ and VOQ' would be connected by a rational
relation, contrary to our hypothesis,

Let now +R, v/R’,...be the terms of order uy—1 on
which x; depends ; they occur in p, g n s; then can the
quantities p, g, r, s, in which they occur, be reduced to the

el
2
S 3

Q!
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normal form with respect to VR and +/ R'; and _if, for tgft
sake of simplicity, we take only two quantities, VR and v/ R,
we have B
(G) p=K1+A1V§+F1\/ﬁ’+Vl\/ﬁ-'\/F\”_—'O,
and three analogous equations for q, r, s. o\
The hypothesis, already used several times, of the .l.p\dB-
pendence of the roots, furnishes the equations R\,
(@) «=0, A=0, u=0, ,=o

Hence equations (¢) and tonsequently f(x) =,0::a:re satisfied
when for X; we subst‘.ih.lte the conjugate va.l,ués deduced by
changing the signs of VR ang VR \

Therefore the equation f(x) =0 s a?go\\atisﬁed by all the
sonjugate values deduced Srom x, by changing the signs of the
r00ts of order y — 1, O

The same reasoning ig applicable to the terms of order
B2, n—3 .. and ouyp pliédrem is completely proved.

11, We have so fay considered two equations

F(x)£90" ana f(x)=o0,
3
Both have rationy i;iefﬁeients and con
F(x) is of degregn2m'angd may have m
have other rootd; besides the x/a.

equation, is) =0, defined as the
with ratioq coefficients, admjt;

quentlyall the x's (10),

A2 ProPERTIRS oF

tain the x’s as roots.
ultiple roots ; f (x) may
We now introduce a third
equation of lowest degree,
g the root x, and conse-

THE EQuaTron ¢ (x) =0,

D)+ $ () =0 is gpn trreducible equation, ie., ¢ (x) cannot be
resolved into two rationg) polynomial factors, Tpis irreduei-
bility is due to the hypothesis that $ (x) =0 is the rational

equation of lowess degree satisfieq by the xs,
For if we haq

¢ (x) =4 (x) X (k),
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then ¢ (x,) = ¢ would require either y (x;) =19, or x (%) =0,
or both. But since these equations are satisfied by all the
conjugate values (10), ¢ (x) =0 would not then be the equa- -
tion of lowest degree satistied by the x/s.

IL ¢ (x) =0 has no multiple roots. Otherwise ¢ (x) could
be decomposed into rational factors by the weil-known meth-
ods of Algebra, and ¢ (x) =0 would not be irreducible.

IIL ¢ (x)==0 has no other roots than the x’s. Otherwise)
F{x) and ¢ (x) would admit a highest common divisor, .Wj.fl‘fch’
could be determined rationally. We could then degempose
¢ (x) into rational factors, and ¢ (x) would not be jfredueible.

IV. Let M be the number of x’s which have distinet values,
angd let O

4D
X3 Xgy « « - Xy x\

be these quantities. We shall then Haye

d(x)=C(x—x) (x'.—.{fgig) coe (X g

For ¢ (x) =0 is satisfied by<€he quantities x and it has no
multiple roots. The polynéarhial ¢ (x) i$ then determined save
for a constant factor whése value has no effect upon ¢ (x) =0

Vo ¢ (x)==0+ t&NﬂZy irreducible equation with rational
cogfficients satisfied by the x’s. For if f(x) = 0 were another
rational irredy ci}fle equation satisfied by x, and consequently
by the x’s,€(x) would be divisible by & (x) and therefore
would ngNe irreducible.

By reagon of the five properties of ¢ (x) =0 thus estab-
lished) we may designate this equation, in short, as the irre-
dugible equation satisfied by the x’s.

8. Let us now compare F (x) and ¢ (x). These two poly-
nomials have the x's as their only roots, and ¢ (x) has no
multiple roots. F (x) is, then, divisible by ¢ (x) ; that is,

F{x)=Fi(x) ¢ (x).
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F1 (x) necessarily has rational coefficients, since it is Fbe o
tient obtained by dividing F(x) by ¢ (x). If Fi(x)is .110?: a
constant it admits roots belonging to F(x); and admi.tt:mg
one it admits all the x’s (10). Hence F, {x) is also divisible
by ¢ (x), and . '
Fi (0= Fs () ¢ (). \

If F5(x) is not a constant the same reasoning still holgls;fighe
degree of the quotient being lowered by each epération.
Hence at the end of a limited number of divisiong e reach
an equation of the form .\.\"

FV*I(X)=C1'¢(X), )

and for F(x), A\
FOO=Cole(0]x D

The polynomial F(x) is then a pu}c;é:: of the polynomial of
minimum degree ¢ (%), except for @\constant Sfactor.

14. We can now detern;iﬁp:i“:he degree M of ¢(x). F(x)

is of degree 2m; further, it is the vth power of ¢ (x). Hence
| R Tn

Therefore M is

a.lg;o\E power of 2 and we obtain the following
theorem ; \J

The degres b}‘ the trreducible equation, satisfied by an expres-
gion com_pg.\s@ of square roots only is alicays a power of 2

16,¢ Bince, on the other han
equation satisfied by all the x,'s
, ”tl;;:adrem :
If an irreducible
solved by square roots

d, there is only one irreducible
(12, V.), we have the converse

equation is not of degree 24, it cannot be



CHAPTER II

The Delian Problem and the Trisection of the Angle: {\

t. Let us now apply the general theorem of the preeedmg
chapter to the Delian problem, i.e., to the problem ot sthe
duplication of the cube. The equation of the problem is
manifestly O

ooz O

This is irreducible, since otherwise N@ would have a
rational value. For an eguation of the ghird degree which is
reducible must have a rational lmea.f’ actor.  Further, the
degree of the equation is not of the form 25 ; hence it cannot
be solved by means of square rbnts, and t;he geometric con-
struction with straight edge and compasses is impossible.

2. Next let us consi@} the more general equation
)

.\\ . B=2,

A designating a parameter which may be a complex quantity
of the form a+ ib. This equation furnishes us the analyt-
ical E‘Xp!‘es‘ilbns for the geometrieal problems of the multi-
phcatmfx\of the cube and the trisection of an arbitzary angle.
The gitestion arises whether this equation is reducible, ie.
whether one of its roots can be expressed as a rational func-
@dof A It should be remarked that the irfeducibility of
ah expression always depends upon the values of the guan-
tities supposed to be known. In the case x*=2, we were
dealing with numerical quantities, and the guestion was
whether v/2 could have a rational numerical value. In the
equation x*= X we ask whether a root can be represented by
a rational function of A. In the first case, the so-called



14 FAMOUS PROBLEMS,

domain of rationality comprehends the totality (_’f ra.t;iong]
numbers ; in the second, it is made up of the rational fung-
tions of a parameter, If no limitation is placed upon this

, & (AN
parameter we see at once that no expression of the form ";"Q)’
in which ¢ (A) and ¥ (A) are polynomials, can 'satisi\"y‘"om‘
equation.  Under our hypothesis the equation is therefore
irreducible, and sinee its degree is not of the form 24, it can-

not be solved by square roots, \\
8. Let us now restrict the variability of A Assume
1 = r(co§@:q- i sin @) ;

whenge \s/,iz \3/} t\%os ¢+ i sin ¢,

OQur problem ¥eSolves itself into two, to
X extract the ewbe root of g reai number and

also that of' complex number of the form

€08 ¢ i sin ¢, hoth numbers being regarded
as arbitrary. We shalbtreat these separately.

L The roots of the equation x* = are
‘\ ‘S/F, c‘f/?, e ‘3(:,
representing by ¢ and ¢ the complex eube roots of unity
PR+

’§ Ez*——l-gl‘\/s’ é=—1—2-|‘\/3

S

iz, 1.

\finctions of "y We know by the
equation x¥=; ig irredueible,
multiplication of the cube doeg
construction by meang of straight

IL The roots of the equation

_Taking for the domain of rationality the totality of rational

Previous reasoning that the
Hence the problem of the
not admit, in general, of a
edge and compasses.

x*==cos ¢+ | sin ¢
are, by De Moivre’s formula,
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x,zeos%’—}-isin 2,
Xy = CO8 ¢-i,-2”+isin¢+2w,
3 3
_ ¢+ dn . o b
Xy 7= €08 g + i sin 3 O\

These roots are represented geometrically by the vertipéé\ of
an equilateral triangle inscribed in the circle with “radius
unity and center at the origin. The /

responds the argument q—; Hence

the equation
x*=zc0s ¢ + i 8in ¢ RO
is the analytic expression of lrhe
problem of the trisection oft'the 4+
a,ngle_ Ve . 3
If this equation were'reducible,
one, at least, of its reots could be represented as a rational
function of cos ¢ @nd sin ¢, its value remaining unchanged
on substituting A 2z for ¢. But if we effect this change
by a continuuy” variation of the angle ¢, we see that the
roots xy, X}\:;\g‘ﬁndergo a cyclic permutation. Hence no root
can bo ﬂ’j'}'esented as a rational function of cos ¢ and sin ¢.
The eguation under consideration is irreducible and therefore
Bgt?ot’be solved by the aid of a finite number of square rools.
€8 the trisection of the angle cannot be effected with straight
edge and compasses.
This demonstration and the general theorem evidently hold
good only when ¢ is an arbitrary angle ; but for certain spe-
¢ial values of ¢ the construction may prove to be possible,

&g, when ¢ = g



CHAPTER III

N
2\, N

The Division of the Circle into Equal P&ljtﬂ;\

f. The problem of dividing a given circle dnbo ‘n equal
parts has come down from antiquity ; for.a-Jong time we
have known the possibility of solving it wheh'h = 22 3, 5, or
the product of any two or three of thes¢“fiumbers, In his
Disquisitiones Arithmeticns, Gauss exbefided this series of
numbers by showing that the divisiow is possible for every
prime number of the form p =2"“+ 1 but impossible for all
other prime numbers and their powers. If in p=27 +1
we make n=0 and 1, welget p=3 and 5, cases already
known to the aneients,{For p=2 we get p=2¥ 1 =17,
4 case completely diseﬁs}ed by Gauss.

For p==3 we get'\p= 27 +1=257, likewise a prime nuni-
ber. The regulai;~polygon of 257 sides can he constructed.
Similarly for wW== 4, since 22 +1==65537 is a prime number.
=0 p=Bl=T, u =8, u=9, y = 11, 12, p= 15, u =18,
#=23, 4336, u =38, # =73 give no prime numbers. The
proofghat the large numbers corresponding to u=5,6, ..., 73
370t prime has required a large expenditure of labor and

“lggenuity, 1t i therefore, quite possible that p=4 is the
tost number for which & solution can be effected,

Upon the regular polygon of 257 sides Richelot published
an extended investigation in Crelle’s Jourmal, IX, 1832,
PP 1-26, 146-161, 209-230, 337-356. The title of the
memoir is ; Pe resolutione algebraica aequationis x% =1, sive
de divisione cireyl; per bisectionem anguli septies repetitam in
partes 257 inter sp aequales commentatio corenatea.
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To the regular polygon of 65537 sides Professor Hermes
of Lingen devoted ten years of his life, examining with care
all the roots furnished by Gauss’s method. His MSS. are
preserved iu the collection of the mathemasical seminary in
Géttingen, (Compare a communication of Professor Hermes
i1 No. 3 of the Gottinger Nuchrichten for 1894.)

2. We may restrict the problem of the division of .g’h‘e‘\
circle into n equal parts to the cases where n is a prime mum-
ber p or & power pe of such a number. For if n i§ 2)com-
posite number and if pand v are factors of n, pritne’ to each -
other, we can always find integers a and b, pasitive or nega-

tive, such that 1=ap+bv; NV
- ¥ Al
. N
whence —1“=E+E‘)-~’t‘x
pry v op

To divide the circle into wv=n 8?71"151 parts it is sufficient to
know how to divide it into wanf » equal parts respectively.
Thus, for n =15, we have .

78

j‘l

y
ol b0
UT.IW

L
8. Aswill appaa:f, the division into p equal parts (p being
a prime numbél}) is possible only when p is of the form
p=2"+1_‘IWe shall next show that a prime number can
be of thigformn only when h=2*. For this we shall make
use {)f‘E:ermat’s Thecrem :
Af P a prime number and a an nteger not divisible by p,
Bhese numbers satisfy the congruence

af~l== 41 (mod. p).

P—1 is not necessarily the lowest exponent which, for a
given value of a, satisfies the congruence. If s is the lowest
exponent it may be shown that s is a divisor of p—1. In
Particular, if s =p — 1 we say that a is a primitive root of p,

-
o

Q"
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and notice that for eévery prime number p there is a primitive
root. We shall make use of this notion further on,
Suppose, then, p a Prime number such that
@ p=2t+1, )
and s the least integer satisfying \
@ 2*=+1 (mod. p). O
From (1) 2 <p; from (2) 20> p. O
> h. O3
(1) shows that h is the least integer satisfying|the congruence
3 2=—1 (mod. p). "NV
From (2) and (3), vy division, 7 \d
2= —1 (wod,p).
- @) s—hh &3 2n
From (3), by squaring, .'f,":"
2% =1 (mod. p).
Comparing with (2) ang 6Bserving that s is the least expo
nent satisfying congriences of the form

V=1 .
vt ST =1 @ot p,

®) 2" s % 2h.
.j\’"' < 5= 2h,
_We h’gé\observed that s is a divigor of p—1=2"; the same
18 trlie'of h, which 1s, therefore, g power of 2. . Hence prime

bambers of the form 2b 41 gpe neceasarily of the form
<‘§2’n+1.

4. This conclusion may e established otherwise. Sup-
Pose that h is divigiple by an odd number, so that

h=h'2p 4 1);
then, by reason of the formyla

x"*‘+1==(x-{-1) (x — -ty —x+1),
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p==2¥®+L L} is divisible by 2t 41, and hence is not a
prime number. :

6. We now reach our fundamental proposition :

p being a prime number, the division of the circle into p equal
parts by the straight edge and compasses is impossible unless p A
is of the form ' .
p=2241=2%41. O

Let us trace in the z-plane (z=x -+ iy) a circle of rafi.iﬁs\I.
To divide this circle into n equal parts, beginning at .2 =1, is

7

the same as to solve the equation RS
2" —1=0. ’
This equation admits the root z=1; let usxfs\}ppress this root
by dividing by z — 1, which is the same\geometrically as to
 digregard the initial point of the division. We thus obtain
the equation o0
42 Nz =0
which may be called the cyelotomic equation. As noticed
above, we may confine ouf ‘attention to the cases where n is
2 prime number or a fower of a prime number. We shall
first investigate the (ke when n=p. The essential point of
the proof is to s\h'oﬁr that the above equation is trreducible.
For since, as w\é:have seen, irreducible equations can only be
solved by mredns of square roots in finite number when their
degres ig-a’power of 2, a division into p parts is always im-
POSSibngwhen p—1 is not equal to a power of 2, d.e.. when

g \

) p£2841£2" +1.
Thus we see why Gauss’s prime numbers oceupy such an
exceptional position.

8. At this point we introduce a lemma known as Gauss's
Lemma, 1f

F(z) =274 Azm—1 4 Bza—14 ... + Lz+ M,
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where A, B, ... are integers, and F(z) can be resolved into
- two rational faetors f{z) and ¢ (z), so that

F (Z) == f (z) ¢ (Z) = (Zm' + @ 2™ 1 4+ wgz™ % + ‘. )
@™+ B2~ Bzt ), N

then must the o's and g's also be integers. In {)t.ller
words : AN

If an integral expression can be resolved into ratignul” factors
these factors must be integral expressions. ~‘ 3

Let us suppose the o’s and A's to be fracl;'foﬁal. In each
factor reduce all the coefficients to the leagh common denom-
inator. Tet a, and b, be these cogmon  denominators.

Finally multiply both members of ouk equation by agbe. It
takes the form P\%

aeboF(z) =1, (2) e (2) =(aoz"‘ +az® 4.
(boz™ +- by 1ok ),

The a’s are integral and-prime to one another, as also the b's,
since a, and b, are the'least common denominators.

Supyose a, andils, Aifferent from unity and-let q be a prime
divisor of a,b,. (\Further, let a, be the first coefficient of f,(2)
and by the fitsh coefficient of ¢, (z) not divisible by g. Let

us develop,$he product f, (z) ¢, (z) and consider the coefficient
of z““'+\‘."““*‘f““. It will pe

N\
ai'bk?ﬂﬂ al—«ibk-i-l + ai_gbk+2+ ' + a.l_{_ lbkvjl + ai+gbk,_2+ -t
"'\ﬁhcﬂrding to our hypotheses, all the terms after the first are

divisible by g, but the first s not. Hence this coefficient is not
divisible by q. Now the coefficient of zm fw"~i—k in the first
member is divisible by ab,, i.e., by g- Hence if the identity
is true it is impossible for a coefficient not divisible by ¢ to
oceur in each polynomial. The coefficients of one at least of
the polynomials are then all divisible by . Here is another

absurdity, since we have seen that all the coefficients are
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prime to one another. Hence we cannot suppose a, and b,
different from 1, and consequently the o’s and #'s are in.
tegral.

7. In order o show that the cyclotomic equation is irre.
ducible, it is sufficient to show by Gauss’s Lemma that the
first member eannot be resolved iuto factors with integral
coefficients. To this end we shall employ the simple method\
due to Eisenstein, in Crelle’s Jowrnel, XXXIX, p. 167 w&hmh
depends upon the substitution .\ N

z=x-4+1. ,~~:\\
We obtain ’

P \: e
f(z)*——_m (;}'_1) j:._...xp l+p\ +ﬂ%2ﬁ1)xp—ﬁ

+Pt_m_ )H_,p_

A

All the coefficients of the expa,ndpd member except the first
are divisible by p; the last “coefficient is always p itself, by
hypothesis a prime nu:nber An expression of this elass is
always irreducible. 4™

For if this were fot the case we should have

flx 4 1P+ am 4.t a, xF 2
A b L by yx o b,

where fvhé\a’s and b’s are integers.

bln\r}e ‘the term of zero degree in the above expression of
%2) 8 p, we have a b, =p. p being prime, one of the fac-

8 of a b, must be unity. Suppose, then,

a,—==+p, b, ==L

E‘l‘lating the coefficients of the terms in x, we have
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The first member and the second term of the second being
divisible by p, a,_,b, must be so also, Since by =1,
21 18 divisible by p. Equating the ecoefficients of tl:fe F»erms
in x* we may show that a2 18 divisible by p. Similarly
we show that all of the remaining coefficients of the faefor
XPtaxm e, x4 a, are divisible by p,-\\But
this cannot be true of the coefficient of xm, whidh™s 1.
The assumed equality is impossible and henee\ tite cyelo-
tomic equation is irreducible when pis a prime;

8. We now consider the oase where 38 a power of a
Prime number, say n— P% We propose.to show that when
P > 2 the division of the circle into gPequal parts 18 1mpos-
ible. The general problem willcthen be solved, since the
division into pe equal parts e\tidéntly ineludes the division
into p? equal parts, \\

The cyclotomic equation ¥ now

Ny

o1
PR
It admits as ¢ t “extraneous tor the problem those which

come from theNdivision into P equal parts, é.e., the roots of
the equatiqn’;”

0,

'zp—l__
O z—1 "

N\
Sup;&u’gss’ing these roots by division we obtain

*

. ¥ —1
NS f(z).___;;:_l__zo

qQuation. Thig may be written

N + 2241 =0,
Tra.nsforming by the substitution '

\/ as the eyclotomic ¢

2=x4+1,
we have

(x+1)p(p—1)+(x+1)v(ph¥)+ covF (xt1p41=0.
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The number of terms being p, the term independent of x after
development will be equal to p, and the sum will take the
form

=D+ p - x (3,

where x (x) is a polynomial with integral coefficients whose
constant term is 1. We have just shown that such an expres- |
sion is always irreducible. Cousequently the new cyclo;o?rﬁ@
equation i3 also irreducible. \ O

The degree of this equation is p(p—1). On_ ﬂléﬂothel
hand an irreducible equation is solvable by Sq_ua.rg Tbots only
when its degree is a power of 2. Hence a oixtle is divisible
into p* equal parts only when p=2, p bemg agsumed to be a

prime. 4
The same ig true, as already not.ed,‘ for the division inte p*
equal parts when o 2> 2. o\ ul
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CHAPTER 1IV.

™\

The Construction of the Regular Polygon of 17 .E‘zi:ieS-

1. We have just seen that the division of the dircle i'nto
equal parts by the straight edge and COmPpasses.is Posmble
only for the prime numbers sfudied by Gauss)'Tt will now
be of interest to learn how the construction:}an actually be
effected. \ _

The purpose of this chapter, then,:w}li be to show in an
elementary way how to inscribe in ghe'circle the regular poly-
Bon of 17 sides. O

Bince we possess as yes no miethod of construction based
upon considerations purely, géometrical, we must follow the
path indicated by our genéral discussions. We consider, first
of all, tle roots of the £yclotomic equation

x‘”{t\‘;"+. o x 1=,

and eonstructi Zeometricall

. ¥ the expression, formed of square
roots, deduped from it,

We know-that the roots aan be put into the transcendental
form Q"
\’\ . 2em . 2xw .
‘ t‘—GOS'i—f-+ISlni—,‘,— (x"———l,2,...16),
4nd if
) _ 2w .. 2
€ == ¢og T’f+ I 8in 7
that

€= Gl‘.

Geo‘metrically, these roots are pe

plane by the vertices, different fy
of 17 sides inseri

presented in the complex
om 1, of the regular po]_ygc'}n
bed in 4 cirele of radius 1, having the origin
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ag eenter. The selection of ¢ is arbitrary, but for the con-
structlon it is essential to indicate some ¢ as the point of
departure. Having fixed upon ¢, the angle corresponding to
¢ 18 x times the angle corresponding to e, which completely
determines e,.

Z. The fundamental idea of the solution is the following %,
Forming o primitive root to the modulus 17 we may arfonge
the 16 rosts of the equation in a cyele in a determinate arder

As already stated, a number a is said to be & pr,lmltwe Toot
to the modulus 17 when the congruence \

=1 (mod. 17) N

bas for least solution s==17—1 =16. \The number 3 pos-
sesses this property; for we have N\

P= 3 p=5 =i =12
¥= 9 =15 30=\8 = 2
=10 s=11 gh= 7 8¥= 6
$¥=13 3p=16 o= e =1

Let us then arraﬁg} the roots e 50 that thejr subscripts
are the precedmg remamders in order

It

(mod. 17).

€8 €9y €104 Em €55 €157 E11; €58y €14y &5y €1y €4y E1p €25 €8y €

Notice t:hQ;}.\lf r is the remainder of 3 (mod. 17), we have
O 3c=17q+r,
whess .
X4 s the next remainder, we have similarly
= = ()= ()

Henee in this series of roots each root is the cube of the preceding.

Gauss’s method consists in decomposing this cycle into
Sums containing 8, 4, 2, 1 roots respectively, corresponding
to the divisors of 16, Each of these sums is called & period.
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The periods thus obtained may be caleulated successively as
roots of certain quadratic equations.

The process just outlined is only a particular case of that
employed in the general case of the divisiun into p equal
parts. The p— 1 roots of the cyclotomic equation are cyelie-
ally arranged by means of a primitive root of p, ?‘“{1 the
periods may be calculated as roots of certain auxilidry-equa-
tions. The degree of thess lagt depends upon the prime fac-
tors of p—~1.  They are not necessarily egfations of the
second degree, RE

The general case has, of course, beenfreated in detail by
Gauss in his Disquisitiones, and alsp by Bachmann in his
work, Die Lehre von der Kreisteifung(CLeipzig, 1872).

8. 1In our case of the 16 roofg)the periods may be formed
in the following manyer . Form' two periods of 8 roows by
taking in the cycle, first, the“roots of even order, then those
of odd order, Designat8 ‘these periods by x, and x,, and
replace each root byjts index. We may then write symbol-

ically O
X =9F 13+ 15416 + 8+4+4 24 4,
X =3+ 104 5+1141447412+6

Operating'apion x; and % in the same way, we form 4 periods
of 4 ter\n'gl}
N N=13+164+ 44 1
\ Yo= 94154+ 84 2
) Yo=10+4+114 7.4
) Yo= 3+ 5414412

Operating in the same Way upon the y's, we obtain 8 periods

of 2 terms :
Z=16 +1, =114 8§,
=13+ 4, zz=10+4 T,
=15+ 2, ;= 5-+12,
3= 948, Zg= 3+ 14.
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It now remains to show that these pericds can de caleulnted
successively by the aid of square roots.

4. - It is readily seen that the sum of the remainders eorre-
sponding to the roots forming a period z is always equal to 17.
These roots are then ¢ and ¢4

= 2—»""-{—i5|inr2—”r O
€ =008 1 1 17’ ~™

¢ —ey_,—ros (1T—rn) ?—; + i sin (17 _—Q‘%&

_ 2r . w0 2 N
== 008 177~ i sin r g7 .~
Hence AN
2% ©
&t e =2 cos ST

Therefore all the periods z are ;ééﬁl, and we readily obtain

ad
3

. 2
zl=2r3052—1r Z5=26086‘il.;!

TN
%% 2
z,=2 c@{'\ij?-i_;, 2, =2 cos 7-1%,
2
2z =2/cos 2 f—;, z;=2co8 b -1-;,
R0
§ :“ 2 2"'
"§”24=2 00581—;, zs=20033ﬁ-

"{@Oﬁ:eé'irer, by definition,
A ‘=z, 4+ z,+ 2.+ z, xe=2;+2s+ 21+ 2o
Yi=2zy 3 2, y,=z,—f—z,, YS=7-5+ZG’ y4=z1r+23-
5. It will be necessary to determine the relative magnitude
of the different periods. For this purpose we shall employ

Fhe following artifice : We divide the semieircle of unit radius
into 17 equal parts and denote by Sy, S - - - Sy the distanoes
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of the consecutive points of division A, A,, ... A,; from the
initial point of the semicircle, S,, being eqguul to the diam-
eter, i.e, equal to 2. The angle
A, A1;0 has the same measure as the
half of the are A, O, which equal{\

2_3;:5_ Hence .\:}’
KT (,1’:"__1
S—Zsmg4 2 cos 5T

That thxa may beml‘dentlual with

2 cos h 1,‘,, we n{“st have

4|\=!: T — x,
:gm-*lx —4h.

FIa. 3.

Giving to h the values 1, 2, 3,4, 5 6, 7, 8, we find for « the
values 13, 9, 5, 1, — 3, —-7 -1‘1 — 15, Hence

I = 513, Fe Zy == — ST,
3= S;sg"’;\ zg = — Sy,
Za =Q"’ 2y =— 5,

L S1es zZa== S,

The figure shows that S, increases with the subscript; hence
the order:~Qf Incressing magnitude of the periods z is

’.‘\ 24y Zgy Zyy Zyy Zgy Zg, 24, 2Z;.
Mﬁreover, the chord A,A,, , subtends p divisions of the semi-

\gireumference and is equal to S ; the triangle OA A, . , shows

that e

SK—i-p < Sx + Sp9
and a fortiori
Sx+p< Sx+1-+ Sp+r'-

Caleulating the differences two and two of the periods y, we
easily find
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Y1_)’2'::st+sl _So"i' 815>0’
YL_')’aESm“i‘Sl + 8+ 3 >0,
YI'—Y4=S].3+SI + 55 >0,
Ya““)’s=so — S+ S5+ 5,20,
,Vs_:f-izs!! — St S:— S5 <0,
}’n_Y4—"=—S1“811TSn""Ss<O-

Hence A\
Ys<3(2<}'4<¥1- AN

Finally we obtain in a similar way

Xg < X1 '\\.

3¢

6. We now propose to caleulate z; == 2 cod\ 7 After mak-
ing this calculation and constructing z,,%&-can easily deduce
the side of the regular polygon of 1{6ides. In order to find
the quadratic equation safisfied b;y the permds, we proceed to
determine symmetric functiong(ef’ the periods.

Associating z; with the penoa z, and thus forming the
period y;, we have, first, .

\21 + 23 =Y
Let us now determﬁxé z,2,, We have
Q }~z,.z2 = (16 + 1) (13 4+ 4),
where the sﬁnﬁolie product «p represents
O
,\\w €€ =€y

Henee\lt should be represented symbolically by « + p, remem-
h%l‘:’}lg to subtract 17 from x + p as often as possible. Thus,

3

22, =12+3+144+5=y.

Therefore z, and z, are the roots of the quadratic equation

© 22—yz+ =0
whence, since z, > z,,

Z_Y1+\/Y12_44 _Yl'_'\/ylx_‘L‘_
= 5 , 2= 2
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We must now determine y, and y,. Associating y, with the
peried y,, thus forming the period x,, and ys with the period
¥s thus forming the period x,, we have, first,
Y1 + Yo = X1. )
Then, N\
Yiye= {13+ 16 +44 1 (9 +15 + 8+ 2). A

¢\,
Expanding symbolieally, the second member becomeg eqial
to the sum of all the roots; that is, to — 1. The);efore Y1

and y, are the roots of the equation

m'\“
() y‘—xly—lz()_,

whence, since y, > y,, AN
N \/Xlz +4 ,__\;‘*— x'+4
= ) ’ ¥ 2
Similarly, R\
Ya + f:i,: Xg
and A\
W Y= —1
Hence y, and y, are t;hq\roots of the equation
) \ Y—xy—1=0;
whenee, since {,? Ya
,_:_\:xg‘-}- VatF 4 —V‘x, +4
S R T

Ity n\w remains to determine x, and x,. Since x, 4+ xg i8
g 1 to the sum of all the roots,

\
) T

Further,

%= (13 +16 44+ 1+ 9+ 15 +8 4 2)
(10+114746+8+5+14+12).

Ezpanding symbolically, each root ocours 4 times, and thus

Xy =s— 4.
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Therefore x, and x, are the roots of the guadratie

€3] X+ x—4=0;
whenee, since %, > Xg,
1417 —1—1T
M= =g

Solving equations £, 4, o, { in suceession, 2, is determmeﬁ'
by a series of square roots. O
Effecting the ealculations, we see that z, depend& upon the

four square raots \

VIT, Vii ¥4, Vit 4, Vyr =Y.

I we wish {o reduce z, to the nor alﬁorm we must see
whether any one of these square riiﬁﬁs can be expressed
rationally in terms of the others. \J/

Now, from the roots of ('q), .

\/h’ -+ 4': ¥Yi Yu
J*‘:’ +4=yi—¥s
Expanding symbolléa:lly, we verify that

(’"" ya) (e —yp =2 (0 — xg),

oy Gim ) = (B + 16 +4+1—0—16—8~2)B+5+ 14
12— -7—8)

=16+ 1410+ 8— 6— 7— 3~ 2

N + 2+ 4418+11— 9-10— 68— 5
\‘ + 7+ 0+ 1+16—14—15—11—10
+ 44 8+15+18—11—12— 8— 7

—12—14— 6- 44 2+ 3+18+1D
— 1— 8—12—10+ 8+ 9+ 6+ 4
—11—13— 5— 3+ 1+ 2+16+14
— 5— 7T—16—14+12+ 18+ 6+ 8
=2(18+1+84244+18+15 +9—10—6—7—3—11—5—14
— 12}
= 2(x; — xg).
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that is,

Vi i+ 4 VigT 4 = 2 ViT,
Hence Vx,#+4 can be expressed rationally in terms of the
other two square roots, This equation shows that if two of
the three differences Y1 Yo Yo = ¥ X3 — X are positive, the ™
same is true of the third, which agrees with the resu}t\&:{}b-
tained directly, N\

Replacing now x,, Y, ¥s by their numerica]’}j;]‘.lﬁeS, we

obtain in succession O
~N
—14Vi7 S
Xlz"_'—é—‘—' ’ \
N

Tl VITHAfaa—2viz (<
= 1 r N

— 1~ VIT 4\ B2 VRN
=L 52 ViR

2 =V HVIT 4 /38 = 2VAT
I

+3@+12VEA1\6\/34 +2VIT—2(1—v/T7)\ /34— 217

N\

The algebraic part of the solution of our problem is now
eomplw\ata‘;“ We have already remarked that thers is no known
constfietion of the regular polygon of 17 sides based upon
gu\:r:e}}r geometric considerations, There remains, then, only
“the geometric translation of the individual algebraic steps.

7. We may be allowed to introduce here a brief historical
account of geometrig eonstructions with straight edge and
compasses,

In the geometry of the ancients the straight edge and com-
passes were abways used together ; the difficulty lay merely in
bringing together the different parts of the figure so as not to
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draw any unnecessary lines, Whether the several steps in
the eomstruction were made with straight edge or with com-
passes was a matter of indifference. '

On the contrary, in 1797, the Italian Mascheroni sueceeded
in effecting all these constructions with the compasses alone ;
he set forth his methods in his Geometria del compasso, and
claimed that coustructions with compasses were practically®y
more exact than those with the straight edge. As heex-©
pressly stated, he wrote for mechanics, and therefore, 13-?;.}1;\21 a
practical end in view. Mascheroni’s original work igdiffieult
to read, and we are under obligations to Hutt for furnishing
abrief »ésumé in German, Die Mascheroni’scher Oonstructionen

 (Halle, 1830), K7 \d

Soon after, the French, especially the-disciples of Carnot,
the author of the Géoméirie de posiﬁiﬁﬁ; ‘strove, on the other
hand, to effect their constructiondas far as possible with
the straight edge. (See aiso;fI}a,mbert, Freie Porspective,
1774.) )

Here we may ask a q}}@éhion which algébra enables us fo
answer immediately ; In)what cases ean the solution of an
algebraic problem be &mstmcted with the straight edge alone?
The answer is_not~given with sufficient explicitness by the
atthors mentiogped. We shall say :

With the-straight edge alone we can construst all algebraie
expressiongd\ahose form. is rational.

With\a' similar view Brianchon published in 1818 a paper,
Iﬂ%\u})})ﬁcaﬁons de lu théorie des transversales, in which he shows
how his constructions can be effected in many cases with the
straight edge alone. He likewise ingists upon the practical
valte of his methods, which are especially adapted to field
work in surveying, ' '

Poncelet was the first, in his Traité des propriétés projectives
(Vol. 1, Nos. 851-357), to conceive the idea that it is sufficient
Y use a single fiwed eircle in connection with the straight lines
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of the plane in order to construct all expressions depending
upon sqnare roots, the center of the fixed circle being given.

This thought was developed by Steiner in 1833 in a cele-
brated paper entitled Die geometrischen Constructionen, ausye-
Sikrt mittels der geraden Linie wund eines festen Kreisesfuls
Lehrgegenstand fiir hihere Unterrichtsanstalten und zw{fasgalbst-
unterricht, PR\

8. To construet the regular polygon of 17 sides we shall
follow the method indicated by von Staudt (€rele’s Journal,
Vol. XXIV, 1842}, modified later by Schrﬁ‘[;}r (Crelle’s Jour-
nal, Vol. LXXYV, 1872). 'The construction of the regular
polygon of 17 sides is made in a.ccqxs(m\jce with the methods
indicated by Poncelet and Steineg;\inasmuch as besides the
straight edge but one fized eircld 18" used.®

First, we will show Aow with\the straight edge and one fixed
eirele we can solve every quallratic eguation.

At the extremities offgi' diameter of the fized unit cirele
(Fig. 4) we draw twa(%angents, and select the lower as the

£ O axis of X, and the diameter
A £ - perpendicular to it as the
. axis of Y. Then the equa-
gty 2 tion of the circle is
04 Ay (y—2 =0
AL — Let \
o\ v ' ¥ —px+q=0
N Fig. 4,

~\ _ be any quadratic equation
\/ with real roots x1 and x,, Required to construct the roots x;
and x, upon the axis of X.

Lay off upon the upper tangent from A to the right, a seg-

ment measured by E; upon the axis of X from O, a segment

* A Mascheroni construction of the regelar polygon of 17 sidés by
L. Gérard ia given in Math, dAnnalen, Vol. XLVIIL, 1898, pp. 300-892.
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measured by -E ; connect the extremities of these segments bjr

the line 3 and project the intersections of this line with the
citcle from A, by the lines 1 and 2, upon the axis of X. The
segments thus cut off upon the axis of X are measured by x
and x,.

Proof. (Calling the intercepts upon the axis of X, le and xg, |

we have the equation of the line 1, N,

2x+ x (y —2)=0; A\
of the line 2. 2, \J
2% 4 x, (y — 2) =0.
If we multiply the first members of thesg two equations we
get R
o R (g — ) + IR — 2y =0
as the equation of the line pair $ormed by 1and 2. Subtract-
ing from this the equation of'the circle, we obtain

X1+ Xg
2

&

<&
XO-@‘«P%@—*?)*—YO—%=0

This is the equ’a;{;iﬁn of a conic passing through the four
int‘-erseetiong,\b} the lines 1 and 2 with the qirele. From
this eq ati’ti:ﬁ' we can remove the factor y — 2, correspond-
ing to tite tangent, and we have left

o x| N om0
which is the equation of the line 3. If we now make
X+ x=p and x;x,=gq, we get

pxtio—2—y=0

and the transversal 3 cuts off from the line y =2 the seg-

N
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ment ?}, and from the line y = 0 $he segment g Thus the

correctness of the construction is estab :aed.

9. Inaceordance with the method just explained, we shall
now construct the roots of our four quadratic equations,
They are (see Pp- 29-31) A +

¢(\A

® 4+ x—a = 0, with roots x, and x, ; x, = gy -
M ¥~ xy—1 =0, with roots y: and y,; y}‘%s}“&:
() ¥ —xy -1 =0, with roots Yo and y; 59073 vy,

) Z—yz+4y, =10, with reots z, and ;:93\\21 > z3.
These will furnish v

_ 2 ND
2, =2 cos 17’,,:;'\

whenee it i easy to construct ﬂ:ﬁe}pol}’gon desired. We
notice further that to constructg; it is sufficient to construet
X1y X33 Y15 Yoo ..'.}; ) '

We then lay off the fQHfl;&;illg segments : apon the upper
tangent, y =2, ~

al

S

3 Ty s 3
X3 Xz yl

£
L 3

upon the axis of }}\

’\”:}"’ +4) _"'!': '_‘:'l‘a Xf
'\:w‘ X Xz }'1
T;his:m}ay all be done in the following manner: The
Bt?alght"Ilne eonnecting the point - 4 upon the axis of X
W}Fh. the point — 4 upon the tangent y = 2 cuts the eircle in
AN

@, ~ A 4

Ty

Fia. 5,
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two points, the projection of which from the poiut A (0, 2,
the upper vertex of the cirele, gives the two roots x;, x, of the
first quadratic equation as intercepts upon the axis of X.

. 4
To solve the second equation we have to lay off - above
i

and — e below.
X1 A\
To determine the first point we connect x, upon the axis(o}"\
X with A, the upper vertex, and from O, the lower Vertex,
draw another straight line through the® intersection of’ this
line with the circle. This cuts off upon the upper tangent

the intercept iu This can easily be shown 31}aiytically.
1 ny

R4
The equation of the line from A tox(Fig. 5),

2% + x;y iQ*n
and that of the circle, . N\
2+ 5y —2)=0,
give as the codrdinates pf their intersection

\\ '.4)(1 2X1’

x4+ 4’ X 44

The equatiﬂl},qf: the line from O through this point becomes
&
3 . xl

N y="x,

Gujst{ug off upon y =2 the intercept -;£
) 1

We reach the same conclusion still more simply by the use
of some elementary notions of projective geometry. By our
construction we have obviously associated with every point x
of the lower range one, and only one, point of the upper, 80
that to the point x = oo corresponds the point x'= 0, and con-,
versely. Since in such a correspondence there must exist a
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linear relation, the abscissa x' of the upper point inust satisfy
the equation

y __¢onst,
X =
X
Since x' =2 when x =2, as is obvious from the figure, the
constant = 4, |
-4 A 4 Ko N
S )\
N
N\
L9
-1 0 +1 N
&y “i\\w
Fig.g. LW
3

X
NN

To determine ———:— upon the axis"of X we connect the point
1 |

=4 apon the upper with the‘jiédint <+ 1 upon the lewer tan-
gent (Fig. 6). The point-hus determined upon the vertical

diameter we connect{with the point 4 above. This line
£ 3} X

cuts off upon phé\;;is of X the intercept — xl For the
line from *t{to+ 1, l
o 5y -+ 2x =2,
inter\&'{\ét}“the vertical diameter in the point (0, 3). Hence
ﬁ%@}'equa.tion of the line from % to this point is
<\‘: 5y — 2xx =2,
and its intersection with the lower tangent gives —i
The projection from A of the intersections of the line from
—te g‘l— with the circle determines upon the axis of X the

two roots of the second quadratic equation, of which, as



THE REGULAR POLYGON OF 17 SIDES. 39

already noted, we need only the greater, y. This corres-
pouds, as shown by the figure, to the projection of the upper
interseetion of our transversal with the circle.

Similarly, we obtain the roots of the third quadratic equa~
tion. Upon the upper tangent we project from O the inter-
section of the circle with the straight line which gave upon
the axis of X the root + x, ‘This immediately gives the

intercept E-, by reason of the correspondence just expla,i@e&;.\

Xg
—4 -}l A “'( ~N
&
N
z, ol 11
RO Fe
Fra. a0

It we connect this point with ‘the point'where the vertical
diameter intersects the line joining — 4 above and + 1 below,

" 1 .
we cut off upon the {mjg of X the segment — as desired.
2

If we project thab,intersection of this transversal with the
cirele which lieg in the positive quadrant from A npon the
axis of X, weyliave constructed the required root y, of the third
guadratic equation.

We @ﬁe finally to determine the root z, of the fourth quad-
ratiy équation and for this purpose to lay off % above and ;L:

\1_9&1‘{‘?- We solve the first problem in the usual way, by pro-
jecting the intersection of the eircle with the line connecking
A with 4y, below, from O upon the upper tangent, thus

Obtaining é- For the other segment we connect the point

1
+4 above with y, below, and then the point thus determined
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o 4 -
upon the vertical diameter produced with —. This line cuts

1
off upon the axis of X exactly the segment desired, ¥, For

the line a (Fig. 8) has the equation .
(y4——4)y+2x=2y4. Q"
A 4 ~+4 .\:\
NS ©
b @ 4 ( )
L€
Z A A

ar. L
¥ia. 3. 2\

AN - 2
It cuts off upon the vertical djgmeter tlie segment -%Z
The equation of the line b ig then' 7

Zyix + (a= 1) y =2y,
and its intersection with the axis of X has the absecissa f*

o A
I we project the l\ipper intersection of the line b with the
. 2
circle from A upon the axis of X, we obtain z, =2 cos I“; .
If we desire’the simple cosine itself we have only to draw a
iametetj,gé}a:llel to the axis of X, on which our lust projecting

ray QF‘BNE directly cos % A perpendicular erected at this

Doilts gives immediately the first and sixteenth vertices of the
\”mgula.r polygon of 17 sides. '

The period Z, was chosen arbitrarily ; we might construet
in the same way every other period of two terms and so find
the remaining cosineg, These constructions, made on separate
figures 80 as to be foliowed more easily, have been combined
in a single figare (Fig. 9), which gives the complete construe-
tion of the regulay polygon of 17 sides,
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CHAPTER V.

(General Considesations on Algebraic Construstions, N

1. We shall now lay aside the matter of construction with
straight edge and eompasses. Before quitting the subjgétr e
may mention & new and very simple method of effecting cer-
tain constructions, paper Jolding. Hermann Wisner* has
shown how by paper folding we may obtain theChetwork of
the regular polyhedra. Singularly, about the same time &
Hindu mathematician, Sundara Row, of Madras, published 2
little book, Geometrical Exercises in Pugor Folding (Madras,
Addison & Co., 1893), in which the(game idea is consider-
ably developed. The anthor shows\how by paper folding we
may construet by points auch ct}ﬂ;és as the ellipse, cissoid, ete.

2. Let us now inquire how to solve geometrically prob-
lems whose analytic formjs an equation of the third or of
higher degree, and in particular, let us see how the ancients
succeeded. The m@t"namra& method is by means of the
conics, of whichthe ancients made much use, For example,
they found that’by means of these curves they were enabled
to solve the.problems of the duplication of the cube and the
trisection of” the angle. We shall in this place give only a
general sketeh of the process, making use of the language
of \m‘q&ern mathematics for greater simplicity.

o\t it be required, for instance, to solve graphically the
etbic equation X4 axt 4 bx 4 ¢ = 0,
or the biquadratic,

X“-}"-ax"‘+ bx’+cx+d=0.

* 8es Dyck, Katalog der Miinchener mathematischen Ausstellung von
1898, Nachirag, p. 62.
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Put x¥ ==y ; our equations become

xy+ay+bx+c=0
and y'+axy + by +cx+d=0.

The roots of the equations proposed are thus the abscissas
of the points of interseetion of the two conies,
The equation

\\
¢\
x*=y P\ N

\

represents a parabola with axis versical. The secoridh équa-
tion, i '\\
xy + ay +bx+c¢=0, )

represents an hyperbola whose a.symptoteeéf}r’é parallel to the
axes of reference (Fig. 10). One of {;h'.}four points of inter-

‘0:5.:' Y % j
X

— NG - N 2
& /Z =

0
Fia. 1l.

\§\Fm 10,

section’ is at infinity upon the axis of Y, the other three 5t a

\At'.ﬁ"qité distance, and their abscissas are the roots of the equa-
ion of the third degree.

In the second case the parabola is the same. The h)tper-
bola (Fig. 11) has again one asymptote parallel to the axis O f
X while the other is no longer perpendieular to this az1s.
The curves now have four points of intersection at a finite
distance,
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The methods of the ancient mathematicians are given in
detail in the elaborate work of M. Cantor, Geschichte der
Mathematik (Leipzig, 1804, 24 ed.). Especially interesting is
Zeuthen, Die Kegelschnitte im Altertum (Kopenhagen, 1886,
in German edition). As a general compenditm we may méls
tion Baltzer, Analytische Geometrie (Leipzig, 1882). O\

'\
8. Beside the conies, the ancients used for the soltfion of
the above-mentioned pr@ﬁle’fhs, higher
D curves constructed fof this very pur-
pose. 'We shall \ngrition here only
the Clissoid and the' Conchold.

The cissoid of Diocles (e. 150 B.c.)
may be congtructed as follows (Fig.
12) : T citcle draw a tangent (in the
c figure the vertical tangent on the right)

and te diameter perpendieular to it.

Rraw lines from O, the vertex of the
" gcircle thus determined, to points upon
\\ “ the tangent, and lay off from O upon
, - “ach the segment lying between its
intersection with the circle and the
tangent. The locus of points so deter-
mined is the cisspid,

To derive the equation, let r be the
Fio. 12, radius vector, § the angle it makes with
the axis of X. If we produce r to the
and call the diameter of the cirele 1,
the total Segment equals 1 .

cos &

rence of the two segments is r, and

.\‘ 3

<\¥ﬁngent on the right

The portion cut off by the

circle is cos @, The diffe
henece

= 1 sint
"’"‘“"—& ~ 08 § = 6,
cos cos §
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By transformation of codrdinates we obtain the Cartesian

equation,
(4 ¥y x—y'=10.

The curve iz of the third order, has a cusp at the origin,
and is symmetvic to the axis of X. The vertical tangent to
the circle with which we began our construction is an asymp-
tote. Finally the cissoid cats the line at infinity in the cits,
cular points, o\

To show how to solve the Delian problem by t]i,e.’yéé of
this eurve, we write its equation in the following ,f({r:m ?

Q°
()=
X 1—x x\\

We now construct the straight line, ‘\

»:‘
! =J\:'
X 0%

leis cuts off upon the ta.rigéi]t. x =1 the segment A, and
Intersects the cissoid in & point for which

\ \\ " A 2 A8,
N 1--x
AS

This i3 the equation of a straight line passing through the
point y =0y =1, and hence of the line joining this point
to the pount of the cissoid.

Tkigine cuts off upon the axis of Y the intercept X"
,..\;We now see how P2 may be constructed. Lay off upon

¢ axis of Y the intercept 2, join this point to the pOiI.lt '
X==1, y=0, and through its intersection With the cissoid
draw n line from the origin to the tangent x=1. The inter-
Sept on this tangent equals #2.

4. The conchoid of Nicomedes (. 150 B.c.) is constructed
as follows : Let O be a fixed point, a its distance from & fixed
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line. 1f we pass a pencil of rays through O and lay off on
each ray from its intersection with the fixed line in hboth
directions a segment b, the locus of the points so determined
is the conchoid. According as b is greater or less than a,
the origin is a node or a cons
jugate point; for b =a it\is
a cusp (Fig. 13). & \J)

Taking for axes of Wand Y
the perpendiculaf and paral-
lel through Q'@6 the fixed
line, we have’

Oy b
‘\ "

x—a’
whéﬁee
P

1 : :£x2 + yg) (x — a)” — bixi== 0,
)X

The conchoid is then of the
fourth order, has a double
point at the origin, and is
composed of two branches
having for common asymptote
the line x =a. Further, the
factor (x* + y®) shows that the
curve passes through the eir-
N N Fro. 1a. cular points at infinity, a mat-
@ 2l ter of immediate importance.
N We may trisect any angle by means of this curve in the
following manner : Let ¢= MOY (Fig. 13) be the angle to
be divided into three equal parts. On the side OM lay off
OM =b, an arbitrary length. With M as a center and radius
b deseribe a éircle, and through M perpendicular to the axis
of X with origin O draw a vertical line representing the
asymptote of the conchoid to be constructed. Construet the
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conchoid. Conneet O with A, the intersection of the circle
and the conchoid. Then is £ AQY one third of £ ¢, as is
easily seen from the figure.

Our previous investigations have shown us that the prob-
lem of the trisection of the angle is a problem of the third
degree. It admits the three solutions

N

¢ 4:-}-271', o t+4m \o\ﬁ

3’ 3 3 4

Every algebraic construction which solves this pr?JBIem by
the aid of a curve of higher degree must obvigusly furnish all
the solutions. Otherwise the equation of thé\problem would
not be irreducible. These different solutieds are shown in
the figure. The civelo and the conghdid’ intersect in eight
points, Two of them coincide witlhthe origin, two others
with the circular points at infinityy “None of these can give
a solution of the problem. There remain, then, four points
of intersection, so that we sdem to have one too many. This
is due to the fact that aniomg the four points we necessarily
find the point B such ﬂn}m OMB =2 b, a point which may be
determined without\the aid of the curve. There actually
remain then only:'three points corresponding to the three
ro0ts furnishgd by the algebraie solution.

5 In :ail‘\these constructions with the aid of higher alge-
braic p\llkv‘éS, we must consider the practical execution. We
needvan instrument which shall trace the curve by a com-
Aifubus movement, for a conmstruction by points is simply &
wethod of approximation. Several instruments of this sort
have been constructed ; some were known to the ancients.
Nicomedes invented a simple device for tracing the conchoid.
It is the oldest of the kind besides the straight edge and
tompasses. (Cantor, I, p. 302.) A list of instruments of
inore recent construction may be found in Dyek’s Katalog,
PP. 227-230. 840, and Nachtrag, pp. 42, 43.
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PART 11

TRANSCENDENTAL NUMBERS AND THE
QUADRATURE OF THE CIRCLE A

CHAPTER L )

Cantor's Demonstration of the .E;ﬁétence of
Transcendental Nu;nbérs.

1. Yet us represent numbers as-wsual by points upon the
axis of abscissas. If we restrie!s}:;iifselves 1o rational numbers
the corresponding points will B} the axis of abscissas densely
throughout (iiberall dickt){*"i.s., in any interval no matter how
small there is an inf\ilfsé’number of such points. Neverthe-
less, as the ancients had already discovered, the continuum
of points upon, the'axis is not exhausted in this way ; between
the rational nfzabers come in the irrational numbers, and the
question ariges whether there are not distinctions to be made
smong the irrational numbers.

Leby define first what we mean by algebraic numbers.
Eﬁ{}éﬁ root of an algebraic equation

aga” + ayet +an-1"’+an=0

‘With integral coefficients is called an algebraic number. of
sourse we consider only the real roots. Rational numbers
oceur as a special case in equations of the form

aow+ al=0-
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We now ask the question: Does the totality of real
algebraic numbers form a coutinuum, or a diserete series
such that other numbers may be inserted in the intervals?
These new numbers, the so-called transcendenial numbers,
would then be characterized by this property, that they cannot,
be roots of an algebraic equation with integral coefficients.

This question was answered first by Liouville (€omptes
rendus, 1844, and Liouville’s Journal, Vol. XVI, 1851), and
in fact the existence of transcendental numbers Was demon-
strated by him. But his demonstration, whicll rests upon the
theory of continued fractions, is rathen domplicated. The
investigation is notably simplified by using'the developments
given by Georg Cantor in a memoir{ of fundamental impor-
tance, Ueber eine Kigenschaft des ‘Iz},lregn;ﬁf‘es reeller algebra-
wscher Zahlen (Crelle’s Journal, Vol LXXVIL, 1878). We
shall give his demonstration, making use of a move simple
notion which Cantor, undgf'a different form, it is true, sug-
gested at the meeting of naturalists in Halle, 1891.

2. The demo s{i‘af\ion rests upon the fact that algebraic
numbers form a~c$mtable mass, while transcendental numbers
do not. By this Cantor means that the former can be arrgnged
in a certaif order so that each of them ocoupies a definite
Place, isdlimbered, so to speak. This proposition may be
sta.te\tiias follows:

,2?9‘" menifoldness of real algebraic numbers and the mani-

. Jidness of positive integers can e brought into a one-to-one
gorrespondence.

We seem here to meet 2 contradiction. The positive inte-
gers form only a portion of the algebraic numbers; since
each number of the first ean be associated with one and one
only of the second, the part would be equal to the whole.
This objection rests upon a false analogy. The proposition
that the part ig always less than the whole is not true for
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infinite masges. It is evident, for example, that we may
establish a oneto-one correspondence between the aggregate
of positive integers and the aggregate of positive even num-
bers, thus:

012 3+ n*

462.-“

Iz dealing with infinite masses, the words great and small Q’ré".\
inappropriate. As a substitute, Cantor has introduced ‘the
word power (Michtigkeit), and says: Two infinite ma,sfséé"have
the same power when they can be brought into & azg'q—i‘o-mw cor-
respondence with each other. The: theorem whighvwe have to

- prove then takes the following form: The gygregrate of real
algebraic numbers has the same pofwea:..&s"tke aggregate of
positive integers. o\ :

We obtain the aggregate of real algebraic numbers by seek-

ing the real roots of all algebraig:équations of the form

~

ape” -+ 20" _i\‘ ot A +a, = 0;

all the a’s are supp}ys\eé prime to one another, a positive,
and the equation.ifr’educible. To arrange the numbers thus
obtained in a Ae¢finite order, we consider their height N as
defined by (>

! \“ '
A N=n—14{a+|alt+ il
SN
*{_ﬂ"fepresenting the absolute value of a, as usual. To &
given number N corresponds a finite number of algebraic
equations. For, N being given, the number n has certainly
an upper limit, since N is equal to n —1 increased by positive
numbers; moreover, the difference N — (n—1) is a sum of
Positive numbers prime to ome another, whose number is
obviously finite,
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N oo | laghplagk | bagl | fag] ] ag EquaTion. SN RooTs.
ijt|1]0 z=0 1 0
2{0i010 -
N
2(1(2]0 - 2 -1
111 z+i=0 + 200
2|1101}0 - '\
3/1|310 - PR A
21 2z£1=0 {0 —%
1
12 3;]:2:(}:.\\: +§
2i2|o]o O\ +2
1{1]0 =
1{of1 o\~
3117000 N~
41140 W - 12 -3
31 T\ Sekl=0 —1.61808
221 N - |~ 141421
18 \\" z8=0 -~ 0.70711
238100 - - {(1.61803
2 (2o — —0.33333
2101 22— i =0 { +0.33383
e e - + 0.61803
Wil REg—1=0 +0.70711
M of1lo]e 29 =0 + 1.41421
st l82joionlo — + 1.61803
~O 1i1lo{0 - +3
\/ 110010 -
1{670]1 -
4(1{0|0]o]o0 -

Among these equations we must discard those that are
reducible, which presents no theoretical difficulty. Since
the number of equations corresponding to a given value of
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N is limited, there corresponds to a determinate N only a
finite mass of algebraic numbers. We shall designate this
by ¢ (N). The table contains the values of ¢ (1), #(2), ¢{3)
$(4), and the corresponding algebraic numbers w.

We arrange now the algebraic numbers according to their
height, N, and the numbers corresponding to a single value of
N in increasing magnitude. We thus obtain all the algebraie
numbers, each in a determinate place. This is done in the,
last column of the accompanying table. It is. thergfore,
evident that algebraic numbers can be counted. &N\

7

8, We now state the general proposition: ‘

In any portion of the awis of abscissas, however small, there
is an infinite number of points which ce?'t@'ifb@;do not belong to
@ given countable mass. o))

Or, in other words: A O

The continuwm of numerical valtes represented by a portion
of the axis of abscissas, howepér* small, hus @ greaier power
thum any given countuble ng@sé; ’

This amounts to affirgiilg the existence of transcendental
numbers, It is sufficient to take as the countable mass the
aggregate of algeb;ra\i‘c nurnbers,

To demonstrape-this theorem we prepare a table of algebraie
numbers as belore and write in it all the numbers in the form
of decimal-fractions. Nome of these will end in an infinite

series’.gkg’s. For the equality

N,
e

~O° 1=0999: - 9" -

£ }™

shows that such a number is an exact decimal If now we
can construct a decimal fraction which is not found in our
table and does not end in an infinite series of 9’8 it will
¢ertainly be a transcendental number. By meaus of a very
simple process indicated by Georg Canfor wé ean find not
only one but infinitely many transcendental pumbers, evel
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when the domain in which the number is to lie is very small.
Suppose, for example, that the first five decimals of the num-
ber are given. Cantor’s process is as follows.

Take for 6th decimal a number different from 9 and from
the 6th decimal of the Jirst alyebraic number, for Tth decimal
a number different from 9 and from the 7th decimal of the
second algebraic number, ete. In this way we obtain & deeimal
fraction which will not end in an infinite series of 9 and 1s
certainly not contained in our table. The propositiel s then
demonstrated. A

We see by this that (if the expression is aﬂ}\;ahle) there
are far more transcendental numbers thatt\algebraic. For
when we determine the unknown decima‘}}; avoiding the 9s,
we have a choice among eight different numbers; we can
thus form, so to speak, 87 transeendental numbers, even when
the domain in which they are tq‘lfé i3 as small as we please.

*ad
RN
NN
ay
ay



CHAPTER IL

Historical Survey of the Attempts at the Computatimi:}
and Construction of =. . O

In the next chapter we shall prove that the m\i;uber ™
belongs to the class of transcendental numbers"‘w}hose exis-
tence was shown in the preceding chapter. “Flie proof was
first given by Lindemann in 1882, and {1y a problem was
definitely settled which, so far as oup(kpowledge goes, has
occupled the attention of mathematiefans for nearly 4000
years, the problem of the quadra.jﬂi-é" of the cirele.

For, if the number 7 is not &lgebraic, it certainly cannot
be constructed by means “of's'traighh edge and compasses.
The quadrature of t}a.-e.cii}:le in the sense understood by the
ancients is then m sﬁbﬁe. It is extremely interesting to
follow the fortunesof ‘this problem in the various epoehs of
Science, as even, 1w attempts were made to find a solution
with straight,eligh and compasses, and to see how these Reces-.
sarily fruitlésy efforts worked for advancement in the 1mani
fold realinof mathematics.

Thelfollowing brief historical survey is based upon the
Bxcg}leng work of Rudio: Archimedes, Huygens, Lambert,

gendre, Vier Abhandhimgen iber die Kreismessung, Leipzig,
.1892. This book contains a German translation of the
investigations of the authors named. While the modo of
Presentation does not touch upon the modern methods here
discussed, the book includes many interesting details which

are of practical value in elementary teaching.

Pl
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1. Among the attempts to determine the ratio of the
diameter to the circumference we may first distinguish the
empirical stage, in which the desired end was to be attained hy
Ineasurement or by direct estimation.

One of the oldest known mathematical dacnments. the Rhind
Papyrus (c. 1650 B.c), contains the problem in the
well-known form, to transform a circle into a squakenof
equal area. 'The writer of the papyrus lays déwn the
fotlowing rule: Cut off $ of a diameter and eowstroet a
Square upon the remainder; this has the sarqe:area as the
cirele, The value of 7 thus obtained is (A023.16 - - -, not
very inaccurate. Mueh less accurate is the value m=J,
used in the Bible (1 Kings, 7. 23, 2 Ch\r{)ﬁlbles, 4. 2).

2. The Greeks rose above this :éﬂipirieal standpoint, and
especially Archimedes, who, in A work xikhou péranas, COM-
pubed the area of the cirele bf;': the aid of inseribed and eir-
cumseribed polygons, as isstill done in the schools. His
metkod remained in use i the invention of the differential
caleulus ; it wag espsé&ly developed and rendered practical
by Huygens (d. 1654) in his work, De eirculi magnituding
inventa, "

As in the™dhfe of the duplication of the cube and the
irisection 6fthe angle the Greeks sought also to effect the
quadrature’of the circle by the help of higher curves.

qu,:si er for example the curve y =sin—tx, which repre-
_sents' the sinusoid with axis vertical.  Geometrically, 7
appears as g particular ordinate of thig curve; from the
standpoint of the theory of funetions, as a partieular value of
our transcendental funetion, Any apparatus which deseribes
a transcendental curye we shall call 3 transcendentsl appara-
fus. A transcendenta)] apparatus whieh traces the sinusvid
BIVeS us a geometric construction of .,

In modern language the ourve y=sin"1x is ecalled an

L]
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integral curve because it can be defined by weans of the
integral of an algebraie funetion,

— X

‘-U V1=«
The aneients called such a curve a quadrairic or rerpuywvi- Q
fovea. The best known is the quadratriz of Dinostrafy
(e. 330 ®.c.) which, however, had al- N
ready been eonstructed by Hippias of
Elis (c. 420 B.c.) for the trisection of
an angle. Geometrically it may be
defined as follows. Having given a
cirele and two perpendicular radii OA
and OB, two points M and L move with\{
constant velocity, one upon the radlu&
OB, the other upon the arc AB! (Flg
14). Starting at the same tmie at O
and A, they arrive mmulta,neuusly at B. The point of infer-
seetion P of QL and tha\pamllel to OA through M desecribes
the quadratrix. \

From this deﬁmt.lon it follows that y is p1'*:113-01*'10115‘1 to 6.

o, 4.

Further, since for y=1,8=3 T e have
N 2
‘"\..

N b=37;

andfrom 6 = tan—1Y the equation of the enrve becomes
X

o \ ¥

Q

y = tan z y
It meets the axis of X at the point whose abseissa is

x = lim , fory=10;

tan "Zy
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2
hence A=
™

According to this formula the radius of the circle is the
mean proportional between the length of the quadrant and
the abscissa of the intersection of the quadratrix with the\
axis of X. This curve can therefore be used for the rectifica:
tion and hence also for the quadrature of the cirele. "This
use of the quadratrix amounts, however, simply tova geo-
metric formulation of the problem of rectification®sa) long as
we have no apparatus for deseribing the curve by continuous
movement. \%

Fig. 15 gives an idea of the form of ‘tile curve with the
branches obtained by taking values 0(6 greater than =« or

\\:Z"' Fio. 15.

legiffhan —7.  Evidently the quadratrix of Dinostratus is
N0t/ 80 convenient as the eurve y==8in""x, but it does not
ppear that the latter was used by the ancients.

8. The peried from 1670 to 1770, characterized by the
names of Leibnitz, Newton, and Euler, saw the rise of modern
analysis. Great discoveries followed one another in such an
almost unbroken series that, as was natural, eritical rigor fell
into the background. For our purposes the development
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of the theory of series is especially important, Numerous
methods were deduced for approximating the value of o It
will suftice to mention the so-called Leibnitz series (known,

Lowever, before Leibnitz):

w

S et R A
This same period Lrings the discovery of the mutual depend,'\,\ '
ence of e and . The number e, natural logarithmsad”
hence the exponential function, aze first found in prineiple in
the works of Napier (1614). This number seemed E'J.t first to
have no relation whatever to the circular funptions and the
- mumber 2r until Fuler Lad the courage to make use of imagi-
nary exponents. lIun this way he arriv@?ﬁg the celebrated
formula Q)

et =cos x + i\sin X,y
which, for x = 7, becomes ~f":"
glr = —14“

This formula is certainly one of the most remarkable in all
mathematics. The mo d’é}n proofs of the transcendence of
are all based on it, singe the first step is always to show the
transcendence of.d. )

AS .

A After 4770 critical rigor gradually began to resume 1ts

rightful L&ﬁhé’ In this year appeared the work of Lambert:

V”"fo?tﬁs?s Kenntnisse fiir die so die Quadratur des Cirkuls

”'*"cj”c{‘f‘i-f' Among other matters the irrationality of 7 is di-s-

engsed. In 1794 Legendre, in his Fléments de géoméirie,
Gwed conclusively that 7 and 7° are jrrational numbers.

question was
The starting-
ﬁl’:l! £
The

5. But a whole century elapsed before the
investigated from the modern point of view.
point was the work of Hoermite : Sur lu fanstion exponen
(Comepites rendus, 1873, published separately in 1874).
transcendence of e is here proved.
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An analogous proof for r, closely related to that of
Hermite, was given by Lindemann: Ueber dic Zahl =
(Mathematische Annalen, XX, 1882. See also the Proceed-
ings of the Berlin and Paris academies).

The question was then settled for the first time, but the
investigations of Hermite and Lindemann were still_very
complicated. R N,

The first simplification was given by Weierstrass in the
Berliner Berichte of 1885. The works previouéff‘mentioned
were embodied by Bachmann in his text-h(pk} Vorlesungen
iiber die Natur der Irrationalzalilen, 1893, )

But the spring of 1893 brought new ahd very important
simplifications. In the first ranl('s. ould be named the
memoirs of Hilbert in the Goltgiger Nachrichten. Still
Hilbert’s proof is not absolutely-elementary : there remain
traces of Hermite’S'reasonilgih" the use of the integral

JPe Tz =1
LV
But Hurwitz a t{iG’orda.n soon showed that this transcen-
dental formuli, could be done away with (Géttinger Nuch-
richten ; C?wgpfes rendus; all three papers are reproduced
with som{gxtensions in Mathematische Annalen, Vol, X LIII).
The démonstration has now taken a form so elementary

thatjt “seems generally available. In substance we shall
fgl}ow Gordan’s mode of treatment,

Y



CHAPTER IIL

The Transcendence of the Number e. \
2N
1. We take as the starting-point for our investigationjth\e'
well-known series A\ Ny

x "
+5re

R

which is convergent for all finite values Qfx\, The difference
between practical and theoretical convergence should here be
insisted on. Thus, for x = 1000 the>calenlation of e by -
means of this series would obvipit}i]y not be feasible. 811l
the series certainly converggs’f theoretically ; for we easily
see that after the 1000th-term the factorial n! in the
denominator increases more rapidly than the power which
L)

. ¢ &\ . xrl
occurs in the numerdtor, This circumstance that = has for

any finite V&lu’e\'k_;f' s the limit zero when n becomes infinite
has an imposfait bearing upon our later demonstrations.
We now yrapose to establish the following proposition:
.Tkezm‘ der ¢ is mot an algebraic mumber, 1.0, 81 equation
leu}ifi.ntﬂgl‘al coeflicients of the form

gt 3

WV Fle)=C,+Cie+C®+* - .4 C.en =10

1s impossible, The eoefficients C, may be supposed prime to
one another,

. We shall use the indirect method of demonstration, show-
Ing that the assunption of the above equation leads to an
absurdity. The absurdity may, be shown in the following
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way. We multiply the members of the equation F(e)==0 by
2 certain integer M so that

MF(e) = MC, + MCie 4 MCoe? 4+ - - 4+ MC e®* =0.

We shall show that the number M can be chosen so that A~

(1) Each of the products Me, Me? - - - Me may be gepa-
rated into an entire part M, and a fractional part € ,a;tri\i.\()ur
equation takes the form L N

MF(e) = MCq+ M,C, + M,C, - - -+ MC)
+Cie, +Coreo 4+ - - -,+}C,,;,, =0;
{(2) The integral part R
MC,+ MG, + ~el— M,,C
is not zero. This will result from the faet that when divided

by a prime number it gives a re»ma,mder different from zero;
(3) The expression o
Cier ':}'"‘C'zée + -+ Cen
can be made as sma.]l.}: fraction as we please.

These conditidn$, being fulfilied, the equation assumed is
maxifestly impodgsible, since the sum of an integer different
trom zero, a.n\d @ proper fraction, cannot equal zero.

The sa,hgn‘h point of the proof may be stated, though not
quite acﬁlrately, as follows:

Witht an exceedingly small error we may assume e, &% - - e"

propoltlonal to integers which certainly do not batisfy our
- a.ssumed equation,

2. We shall make use in our proof of a symbol h* and 2
certain polynomial ¢ (x).

The symbol ht ig simply another notation for the factorial !
Thus, we shall write the series for e* in the form

=Tty
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The symbol has no deeper meaning ; it simply enables us to

write in more compact forin every formula containing powers

and factorials.

Suppose, €.g., we have given a developed polynomial
fx)=3 1" :
¥ '\
We represent by f(h), and write under the form ?c,h', 1{1;\3\
sum AN

-l 214 ¢ 314 Feornt »

But if f(x) is not develbped, then to calcuiaj’{é\{'(h) is t0
develop this polynomial in powers of h and hvally replace
h" by rl.  'Thus, for example, AN

Hk 4 h= 3 ok + hy = S clprhh= S et rh

the ¢', depending on k. N\
The polynonial ¢(x) which @' need for our proof is the
following remarkable expressian

o0 — (0@ =0 (=0T,
&V (p—1)!

where p is a prijhe bumber, n the degree of the algebraic
equation assuméd to e satisfied by e. We shall suppose p
greater thanondnd |C,|, and later we shall make it inerease
without Jigmit:

To ge’ibang*'ﬂmetric picture of this polynomial ¢ (x) we con-
Stl“}ft.’ﬂ]e curve

\”A\; v y = ¢(x)

. t the points x =1, 2,- - -n the curve has the axis of X as
an inflexional tangent, since it meets it in an odd number of
Points, while at the ovigin the axis of X 18 tangent without
fnﬂ“ion- For values of x between 0 and n the curve remains
in the neighborhood of the axis of X; for greater values of x
1t recedes indefinitely.
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Of the function ¢/x) we will now establish three important
properties :

1. x being supposed given and p increasing without limit,
& (x) tends toward zero, as does also the swm of the absolute
values of its terms.

Put u=x(1 —x){Z2—x)* : -(n—x); we may then whife

) up-t u O\
96(*)“,\“},—_:7)1 X O
which for p infinite tends toward zero. N

To have the sum of the absolute values of $Xx) it is suffi
cient to replace —x by |x| in the undevelo'ﬁe\d form of @ (x).
The second part is then demonstrated likérthe first.

2. h bLeing an integer, $(h) @5 an gateger not divisible by p
and therefore different from zero. O

Develop ¢ (x) in increasing powers of X, noticing that the
terms of lowest and highest dégree respectively are of degree
p—land np+p—1. Weltave

r=aptp—i A
. oy c"x? X
${x}= X = A _— e
¥ 3—1 .z“'t:pq_l)!—}-(P_l)I-I_ (p— )
Hence N\
. r=apdp—|
Q" d(h)y =3 ¢ h
N\ I=p—1

Leavipg;\pﬁt of account the denominator (p—1)!, which

oceursyin all the terms, the coefficients ¢, are integers. This

demominator disappears as soon as we replace h™ by r!, since

o the factorial of leagt degree is ho—l = (p—1).. All the terms

O of the development after the first will contain the factor p.
As to the first, it may be written

(1-2-3.. 'ﬂ)"'(pﬁllg_

t
(p~—1)! —or
and is eertainly not divisible by p since p > n.
Therefore ¢ (M= (n!)* (mod. o)

and hence $ (h) £0.
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Moreover, ¢ (h) is a very large number ; even its last texm
alone is very large, viz.:

mp——l*p(pﬁ-l) (np+p—1)

1!
3. h being an integer, and k one of the numbers 1,2 - - 0,
¢ (b + k) 48 an integer divisible by p. ¢
We have ¢(h+k)~2c (h—}-k)’—zc hr, ’.\"\~

a formula in which we are to replace h* by r! only aftet hav
ing arranged the development in increasing powers | oft B
According to the rules of the symbolic calcuh)q\we have
first
¢ (h-- k) Wy N
NN R TR S L) L
(p (BN
One of the factors in the brackets Yeduces to — h; hence the
term of lowest degree in h in the Aevelopment 1s of degree p.
We may then write \

r=np+n—i

Mh\-l- ky= 2"

The coefficients still ha,ve for pumerators iniegers and for
denominator (p\-~ 1)' As already explained, this denomi-
nator disappéar wlen we replace h' by rl. But now all the
terms oN:he development are divisible by p; for the first
may belyritten

(— lqu ko~ [(k—l)' (n—IP - p
\ ) (p—1):
: :(—1)kvkv—’[(k-1)!-(n-—k)ﬂ"'P-
$(h + k) is then divisible by p.
3. We can now show that the equation

Fley=C,+ Ce+ Ce®+ - 3 Cen=

is impossible.
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For the number M, by which we multiply the members of
this equation, we seleet ¢ (h), so that

(M F(e)=Codp () + Cip (hye+ Cop () e+ -+ Cop (h)er.

Let us ry to decompose any term, such as Cy¢ (h)e*, into an
integer and a fraction. We have S

e* ¢ (h)=e"3 ch" L\

N .
Considering the series development of ek, any termwof this
sum, omitting the constant coeflicient, has the ot

R hT -k hr - k3 hTo kT ”‘ﬁt"\..ki‘%—il L
e i TR S e STEE TR

Replacing b by r!, or what amounts tpjﬁe’same thing, by one
of the quantities N\

W =T e — 1) O8RS (=13 - -2,
and simplifying the succe sstves #ractions s

ek. hr_—_ hr+;—,: hr—lk_i: E.(_T‘;_}Q_'._.I_l hr—-!k2+ e . _I__% hkr—1+ kr

T T Dest ]

The first li.l.?l‘z::has the same form as the development of

(h+ ks iintle parenthesis of the second line we have the
series /) :

\\ 0 k k? :
Tt nerst

whose terms are respectively less than those of the series

) TR
\ ek:1+k+,3—,+§‘,+"'

The seeond line in the expansion of e* - h* may therefore be
represented by an expression of the form

G, €% - kT,
e bPINg & proper fractioy
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Effecting the same decomposition for each teru of the sum
"3 ch’
it takes the form
e¥s ¢hm=3Se, (h+ k) +e* ? gratiK"

The first part of this sum is simply ¢ (h+ k); this is a
mumber divisible by p (2, 3), Further (2, 1), O\
¢ (k) = 2 icrkri \ .\\
tends toward zero when p becomes infinite : the sa.iﬁe i§ true
a fortiori of 3,q,,c.k', and also, sinee e*is & ﬁﬁ‘i;}‘e quantity,

of €53, q,c.k', which we may represent by.&’

The term uonder consideration, Cke“’&'(}\)’,'has then been put
under the form of an integer Cy ¢ (h' k) and a quantity Cue
which, by a suitable choice of p,jfxiay be made as small as we

Please. .
Proceeding similarly withall the terms, we get finally

F(e) ¢ (h) =Coéb (h}{(C@ (h+1)+- -+ Cpht+m
4 CutCat: G

It is now easf. to complete the demonstration. All the
terms of the firdt’line after the first are divisible by p; for
the first, |C513s less $han p; & (h) is not divigible by p; hence
Cg(h) 15not divisible by the prime number p.  Consequently
the suth of the numbers of the first line is not 2eTo.
.. (¥l® numbers of the second line are finite in number ; each
\oﬁ them can be made smaller than any given number by a
Shitable choice of p; and therefore the same is true of their
sum,

Sinee an integer not zero and a fraction cannot have zero
for a sum, the assumed equation is impossible. .

Thus, the transcendence of e, or Hermite’s Theorem, 18
demonstrated_

al



CHAPTER 1V.
The Transcendence of the Number 7. ~
1. The demonstration of the transcendence of the gug}ber
7 given by Lindemann is an extension of Hermite’s uroef in

the case of e. 'While Hermite shows that an integral equa-
tion of the form N

CotCiet+ Ciet+- - -+ Conk
cannot exist, Lindemann generalizes this By introducing in
Place of the powers e, 67+ - - sums qﬁ'js‘he’ form
ki + ek2+ . ¥ oM
el ¢ LA e
where the k’s are associa@éﬁ'zalgebraic numbers, ¢.¢., roots of
an algebraic equation, with integral coefficients, of the degree
N; the I's roots of af ‘equation of degree N', étc. Moreover,
some or all of the{t&.f'oots may be imaginary.
Lindemann’y g§11eral theorem may be stated as follows:
e i‘z,u-méfr‘, e cannot satisfy an equation of the form
A Cot+Cile et - ey
NOT Gt e et =0
wﬁ@% the cogfficients C, are integers and the exponents ky i,
%€ respectively associuted algebruic numbers.
\’“\; * The theorem may also be stated :

The number e is not only not an algebraic number and there-
fore a franscendental number simply, but it is also not an
interscendental * number and therefore o transcendental number
of higher order,

* Leibnitz calls & functjon XA,

where ) is an algebraic irrational, an
interscendental funetion,
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Let
ax® + a4 b2, =0

be the equation having for roots the exponents k;;

bx™ 4 byx*~ 4+ -+ b =10
that having for roots the exponents |, etc. These equations
are not necessarily irreducible, nor the coefficients of the firs$

terms equal to 1. It follows that the symmetric functions of )
the roots which alone occur in our later developments weed -

not be integers. O\
In order to obtain integral numbers it will be s.ug‘-ﬂiem to
consider symmetric functions of the quantities “\
aky, aky, * - - ak, )
3 2 x . \\,

bly, b, -+ - bly, oteg 2
These nuuibers are roots of the equations’
y* + ay™! + aay"2 4 - ’:',,’«:{_ a,‘a““‘ =0,
¥ o byy ™ 4 byby 2 AN ¢ A b b =0, efe.
These quantities are integrailzia,ssocia.ted algebraic numbers,
and their rational symmetric functions real integers.

We shall now foll w‘\‘tﬁe same eourse as in the demonstra-
tion of Hermite's thgorem.

We assume eguation (1) to be true; we multiply both
members by,gu” integer M; and we decompose each sur,
such ag _ ~A\“

J.‘\ M(e® + e+ -+ ™),

i‘}f‘?“ﬁh 1ntegral part and a fraction, thus
\‘ M(Bkl"}'ekg—}*' : '—{-ek“):Ml-i-q,
| Mt e+ em)=M+tea

Our equation then becomes

CoM + CM; + CoM, 4+ -
+Ce +Ce =0

N
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We shall show that with a suitable choice of M the sum of
the quantities in the first line represents am integer not
divisible by a certain prime pumbes p, and consequently
different from zerc ; that the fractional part ean be made as
small as we please, and thus we come upen the same contra-
diction as betore, A

2. We shall again use the symbol h'=r! ana_geleds as
the multiplier the quantity M =y (h), where ¢(;);is 2 gene-
ralization of $(x) used in the preceding chapter,formed as
foilows : R4 :

'p(x):(p"—x“p__il—)-?[(kl—‘-x) (kz—— X) . (kﬂ'._.if)praNp.aN‘p.aN“p. s
'[('1—'x)(|, —x}- - ‘(!,(t\-x)]p-b“p-b”'f"b“"“' .

Q"

where p is a prime number gﬁ(’zz}‘izer than the absolnte value of
each of the numbers AN
Cm a:s 6! T Ay bzf's ‘
and later will he assumed to increase without limit. As to
the factors a®e, prone . . they have been introduced so as to
have in the development of ¥ (x) symmetric funetions of the
quantities | ;"
9, ak,. akg, - - - aky,
\’ b’l} bly, - - s blx'y

\

that is, rational integral numbers. Later on we shall have
~(to develop the expressions

2gkAh), Sy, +hy, - -

The presence of these same factors will still be necessary if
we wish the coeflicients of these developments to be integers
each divided by -1

1. y(h) is an ntegral number, not divisible by p and con
sequently different from zeyo,
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Arranging ¢ (h) in increasing powers of h, it takes the form

r=NEN Pl
¥(hy =2 ch

T =1
In this development all the coefticients have integral numer-
ators and the common dencminator (p - 1)L
The coefticient of the first term h?~¥ may be written

1 . Loy Npasi’p . . . .'\".\.
([5_—17 (akl ak.«. © ot gk patta ' \“\
(bl -bly - - - blPLTBAT - o AN
— 1 CRpA R . v-‘-l . Npa H"—"{;:Fbl”ﬁ v
= ST DT @ (b I
' \,J

I in ghis term we replace h*™' by it atne (p—1)! the
denominator disappears. According £8 the hypotheses made
regarding the prime number p, no, factor of the produet. is
divisible by p and hence the prqd.’;léﬁ is not.

The second term ¢ h® becomes likewise an integer when
we replace h by p! but the Hictor p remains, and so for ail
of the following terms.,..\i{ence y{h) is an integer not divis-
ible b p. ¢ '\‘

2 For x, n giugnﬁ}in ite quantity, and p inereasing withow!
timit, gixy=3 &5 tonds toward zero, as does also the sum
zicrer x.\"

: &

We mapwrite
¥ (")\%E c.x
@ W S . :

\ } = (p—] Y [a"a“ P bxb!'(kl —_ x]{k-_,""‘x) Vo '{.kx —_ x)

(I;—*-x)(i,v—x)' . '(Iu""")' . .]i'.
Since for x of given value the expression in brackets is a con-
Staut, we may replace it by K. We then have

vy =K

p— 1}! ’
% quantity which tends toward zero as p increases indefinitely.
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The same reasoning will apply when each term of #(x} 18
replaced by its absolute value.

3. The expression l;:x.;r (k, + k) is an integer divisible by p.
r=

We have
P

'J’(k» + h): Ef‘(('l—;;—:‘g—lh—))?“——b“t}“"l’ PN

N\
L\
. athf--l)p['{k: —k, — h)(k,-—- k, — hy- -« (.,_ h) O (kx T""k\v_ h)]"
* a"‘"b*"l‘[(li s k, _ h)(la"‘— £ — h) ot (Ih' _k, - h}jp&:

The wth factor of the expression in bragkets in the second

line is —h, and hence the term of lowes{\degree in his b2
Consequentty ¢
r-:xpd—n'p+:'-'-3+p—|

Yl hy= 37 b

"’. =g
whence N

,.{t"ﬁ'p+x'p+ Crkp—l

21..»(1(_. Fh)= 3 Cp
=1t T=p
The numeratars of the%oelﬁcients C', are rational and integral,
for they are integ{a’.f‘sirmmetric functions of the quantities
Oak, aky, - - ak,.
SO by, bl,, RN bi,,
and thgiﬁ’ébmmon denominator is {(p—1).
Lﬁjw\e replace ht by 1! the denominator disappears from all

tlie Eoeﬁicients, the factor p remains in every term, and hence
_“the sum i an integer divisible by p.
Similarly for

=X

vg}#’(iv'i"h) e

We have thas established ¢,
to thoge demonstrated fo
theorem.

rée properties of ¢ (x) _aua.lqgm:s
T ¢ (x) in connection with Hermite's
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8. We now return to our demonstration that the assumed
equation '
@) CotCule e - -+ e+ Cy el te 4 et o=
cannot be true. For this purpose we multiply both members
by ¢ (h), thus obtaining

Cop () + Cu[eMy () + ey () +- - ~+e v+ - =6
and try to decompose each of the expressions in brackets, mto
a whole number and a fraction. The operation will be &little
longer than before, for k may be a complex number of. tbe form
k=k'+'k". We shall need to introduce [k|_-+ (&”-{- P

One term of the above sum is

Jy=eFom=xc e
The product e* - h* may be written, as §hown before,

k. | J— _.,_........._-—-—--ki
e h (h+"‘)+k[+1 G DD T ]

The absolute value of ev. ery, ﬁtﬂ-m of the series.
koo k*
0 i
Mz S RTES)
is less than the a.b&sqhte value of the corresponding term in
the series

07 e=taiagt

N\

H \u k K . xl
= [ terners b
A k i@ x
0t e rkel I,
QO r+1+(r+1)(r+2) d

9 being a complex quantity whose absoluto value is less
than 1,

We may then write
e y)y=3cethr=sc (h+k)+X ¢, Geak’ €™

—__"‘P (h + k)+ % err,gkr . el.kl'
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By giving k in succession the indices 1, 2, -+ - w, and form-
ing the sum the equation becomes

ey (h)+ ey (hyt- - e~y (h)

:g}p (k, + h) +§1 tei%is cleg,y, i n
Proceeding simi]arly with all the other SUms, our equgﬁon
takes the form | A
(2y Coy (hy - Cl:zzjv', (k4 )+ C-’.:S:ab (4 by +~~ ~\
+ C;;‘,xs e*ickiq,, + Ce3 ol Fﬁgl o,

b=] r it \

AN _
By 2, ¢ we can make Tk as smallo\rls.\we please by taking

p szlfﬁciently great. Since [ <N this will be true a fortiori
of <\,

CW
Sk, ,
NS
and hence also of
a2y . ™ |
g 2 crkrvqr.kel e

LS 2
Since the coefficiehits C are finite in value aud in number, the
suw which ocoury in the second-line of (2) van, by increasing
Py be made astall as we pleage,

The numbers of the firit 1ine are, alter the first, all divis-
ible bj\—b(:}), but the first number, Cui(h), is not (1)
Theréfote the sum of the numbers in the first line is not
digis’?ble by p and hence is different fron: zero. The sum of

<‘§'n integer and a fraction cannot he zero, Hence equation (2)
is impossible and consequently also equation ¢ 1).*

4. We now come 10 a proposition more general than the

preceding, but whosge demonstration iz an immediate conse-

* The proof for the more general case where Cy = 0 may be reduced

to this hy multiplication by 2 miitable factor, or tay be obtained directly
LY a proper modificationy of y(h}.
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quence of the latter. For this reason we shall call it Linde-
mann’s eorollary.
. The number ¢ cannot sutisfy an equation of the form

4] 1
) CutClhe™+ Che - - - =0,
Q!
in which the coeffivients ure infegers even when the exponents
N
ky, Iy + - - are unrelated algebraic numbers. ¢\

To demonstrate this, let ky, ks, - -, k, be the other rqots:\of'
the equation satisfied by k,; similarly for Iy, &, - - g% ete.
Form all the polynomials which may be deduced drom (3)
by replacing k, in succession by the associatedfoots ky, * -,

I, by the associated roots &, - - - Multip}g@ng the expres-
sions thus formed we have the product \‘\ ’
Mg=1,2--x
I {C,+Ches+Che®+- - 3\ 1 B=12 ¥
a, @, &N

— Cu + C;(Ekl + ekg + - ‘:}._;ehk!)+Cs(ek1+kg+ek2+is+. . )
G MR )

In each parenthesis \{}’é'eﬁ\(ponents are formed symmetrically
from the quantitiés ky I, * - -, and are therefore roots of an
algebraic equat’iqﬁ. “with integral coefficients. Our product
comes under Digdemaon’s theorem; hence it cannot be zero.
Conseque ﬂj" fione of its factors can be zero and the corollary
is demqn;%ﬁted.

Weltiuy now deduce 2 still more general theorem.

T %é number ¢ cannot satisfy an equation of the form
' C+ Cpet+ Chel - =0

where the coefficients as well as the exponents are unrelated
algebraic numbers.

For, let us form all the polynomials which we can deduce
from the preceding when for each of the expressions C, we

substitute one of the associated algebraic numbers
(2

co, C(?')r RNt
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If we multiply the polynomials thus formed together we get
the produet

a=1,2-- y Ng
=1,2 4N
{a} 8% (5 S I, B y &y » My
%SEI"§C0+C13+C,e+ ; y=1,2, -« n
e .'.\.:\'.
=C,,+Ckek+cle*—{—- te O
+Ck,13k+k+Ck,;ek+l+ oo (..'}‘. >
+o o AN
where the coefficients C are integral symmetric functions of
the quantities D
CP, e - ':*H?S(ﬁol’

",

<o, cw,

. .. :'9: C(?l),

*

# ,'
/
s

and hence are rational. “By the previous proof such an
expression cannot valiish, and we have accordiugly Linde-

mann’s eorollary,ir(ité most general form :
The number gucannot satisfy an equation of the form
’\“:’:"'Co"{- Clek+ C-zel+ R |
where t{wf\é:bjmﬂents kA, - -as well as the eogfficients Co, Cyy
s %,}@ebmr'c niembers,
Thl} may also be stated as follows :
I an equation of the form

V CotCe+Ce - - =0
the exponents and coefficients cannot all be algebraic numbers. .
5. From Lindemann’s corollary we may deduce a number
of interesting resnltg, First, the transcendence of w is an
immediate consequence. For consider the remarkable equa-
tion
14 e"=0,
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The coefficients of this equation are algebraic; hence the
exponent i is not. Therefore, 7 is transcendental.

6. Again consider the funetion y==e* We know that
1=e¢" This secms to be contrary to our theorems about the
transcendence of e. 'This is not the case, however. We
must notice that the case of the exponent 0 was implicitly
excluded. For the exponent 0 the function ¢ (x) would lose’,
its essential properties and obviously our conclusions wonld
not hold. A\

Excluding then the special ease (x=0, y=1), Lid@émann’s
corollary shows that in the equation y =e” or x =log.y, y and
% 4., the number and its natural logarithm, ¢annot be alge-
braic simultaneously. To an algebraic valgeof x corresponds
& transeendental value of y, and eonve;sql}. This is certainly
a very remarkable property. O

If we construc the curve y — eXgnd mark all the algebraie
points of the plane, Z.e., all inrr:c.é' whose coordinates are alge-
braic numbers, the curve pa.s‘s’e;s' among them without meeting
a single one except the péint x =0, y=1. The theorem still
bolds even when x a dy take arbitrary complex values. The
exponential curve js_chen transcendental in a far higher sense
than ordinarily‘s\ﬁi)ﬁosed,

7. A furt;k@r‘consequence of Lindemann’s corollary is the
branscendestod; in the same higher sense, of the function
Yy=sin? and similar functions.

Th\e function y = sin~x is defined by the equation

O 2ix=¢¥ —e"
W‘-" see, therefore, that here also x and y cannot be algebraic
Slmultaneous]y, excluding, of eourse, the values x=10,y= 0.
We may then enunciate the proposition in geometric form :

The curve y==sin~lx, like the curvey = €%, passes through

"o algebraic point of the plane, except x = 0, y="0.



CHAPTER V.
The Integraph and the Geometric Construction of’

N
. &N
f. Lindemwann’s theorem demonstrates the transcégdence

of o, and thus is shown the impossibility of solving-the old

problem of the quadrature of the circle, not onlghinithe sense
understood by the ancients but in a far more gdneral manner.
It is not only impossible to construct m\With straight edge
and compasses, but there i3 not even a.pubve of higher order

. defined by an integral algebraic equa't:iém for which 7 is the

e

’.\’.

ordinate corresponding to a ratiomal value of the abscissa.
An actual eonstruction of 7 cap\then be effected only by the
aid of a transcendental curié.’ If such a eonstruction 1s
desired, we must use bqsidés straight edge and compasses

& “transeendentya] ” a.gpa,ré.tus which shall trace the curve _h_y
continuons motion. \

2. Buch an afgi»di*atus is the infegraph, recently invented
and described(hy a Russian engineer, Abdunk-Abakanowicz,
and construdted by Coradi of Zurich.

This ingbrument enables us to trace the integral curze
'"\§~

,\\~ Y=F (x)=/1(x)dx
whe h i ; ;
"0 we have given the differential curve
_ y=f(x)
For this purpose, we move the linkwork of the integraph
so t}"at the guiding point follows the differential curve; the
"-?'MW:Q‘ point will then trace the integral eurve. For 2 fuller
description of this ingenions instrument we refer to e

nrigina'.l memoir (in German, Teubner, 1889; in French,
Gauthier-Villars, 1889).
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We shall simply indicate the principles of its working.
For any point (x, y) of the differential curve construct the
auziliary triangle having for vertices the points (x, ¥}, (x, 0,
(x—1, 0); the hypotenuse of this right-angled triangle makes
with the axis of X an angle whose tangent =y.

Hence, this kypotenuse is paratlel to the tangent to the inte-
gral curve ut the point (X, Y) corvesponding to the point ¥ A

2\,

'\
Y f‘M ¥ % A
VA 1 ¢ N\
rgg_;._ ...,'\\
ralr_. -]
T s
—r r [ r { &
X ] Q Y B3
T .
—?‘nf{ i
/ —ﬂ% RN \
O
\\ * F1G. 16.

_ The apparatus shionld be so construeted then that the trac-
ing point shall jaove parallel to the variable direction of this
hypotenuse, while the guiding point describes the differential
curve. Thisis effected by connecting the tracing point with
a sllarg—g'tlged roller whose plane is certical and moves 50 38 0
be always parallel to this hyputeﬁuse. A weight presses this
@ef firmly upon the paper so that its point of eontach can
advance only in the plane of the roller.

The practical object of the integraph is the approximate
evaluation of definite integrals; for us its application to the
tonstruetion of o 1s of especial interest. .

8. Take for differential curve the circle

4yt =11
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the integral curve is then
Y=/ Ve idx= g sin~1-§+§ Vit —

This curve consists of a series of congruent branches. The

points where it meets the axis of Y have for ordinates |
r¥ar O\
0, = 5 IR : \' \,,'\
Upon the lines X =+ r the intersections have for;oi"di;mtes
o 3 : \
IBI} I'g—4—1 ~\

If we make r=1, the ordinates of thede intersections will
determine the number = or its multiples:

It is worthy of notiee that oupNapparatus enables us to
trace the curve not in a tedious‘and inaccurate manner, but
with ease and sharpness, esl)éfgia.lly if we use a tracing pen
instead of a pencil. N

Thus we have an agtual constructive quadrature of the
circle along the lings\laid down by the ancients, for our

curve is. only a r@;{d‘iﬁcation of the quadratrix considered
by them.

N
L >
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NOTES
PART I — CHAPTER III

Gaussian Polygons. Up to the $ime of Gauss, no one suspected
that it was possible to construet, with ruler and compasses, regular
polygons other than those the number of whose sides could b{h‘\
expressed in one of the forms: 2%, 2%. 3, 2. 5, 2% 15, All of these
were Jnown to the Greeks, Bub (lauss proved as early as 18011
that whenever a prime number F, could be expressed in%he) form
2211, the comstruction of & regular polygon with ¥, (sides was
possible by Euclidean methods. It was then apparent) that regular
polygons not included in the Emclidesn series,\psemely 17, 257,
65537, . . . sides, could be constructed undéry he same imposed
conditions. And indeed Gaunss’s discussiow 1?d‘to the result?, that
the only regzular polyzons which it iz postible to consiruct with
ruler and compasses, are those the pmber P of whose sides can

Q!

be expressed in the form A
2¢. (2 4 1) (224 40 - (@9 + 1) (2 £ 1),
where ¢ . .. o are disti ot positive integers and each 284 4 1 is

2 prime, Tho number of(Sath polygons is small in comparisor with
the number of regulaWiygons which can nob be constructed with
the means employédy As Dickson has pointed out® the number of
P's up to 100 iy 243 ap to 300 is 37 (all noted by Gauss); vp to 1000
18 52; up to LOOI000 only 206. Kraitchik has remarked? that there
are only 30\pelygons with an odd number of gides that are known
to be cpnsttuctible with ruler and compasses. These polygons have
the following number of sides: 5, 16, 17, 51, 85, 255, 257, 771, 1285,
3855,34369,13107, 21845, 65535, 65537, 196611, 327685, 983055,

CNMI29, 3342387, 5570645, 16711935, 16843009, 50520027,
$4215045, 952645135, 286331153, 858993459, 1431855765,
—

* Disguistiones arithmetiow, Leipzig, 1801, D. 6643 Werke, v- 1o 2. &b¢
druck, 1870, p.462; French ed. Recherches Arithmétiques, Paris, 1807,
B. 483; Ger. ed. by Muaser, Berlin, 1§89, p. 447.

* This result was, In effect, stated, but not proved, by Gauss. .
* L. E. Dickson, “On the number of inseriptible regular polygond

Bull. N. V. Math. Soc., Feb., 1894, v. 3, D. 125. _ 10
Kraitchilt, Recherches sur la théorie des nombres, Paris, 1924, p. 215



82 NOTES

4294967295, This set of numbers, together with 1 and 3, coincides
with the divisors of 221 _ 3. 3. 5. 17. 257 . 65537,

The determination of the number of regular polygons which can
be constructed for P less than a given integer is, then, bound up
in the determination of the prime humbers F,. Now for only 18
values of 4 has it been shown whether F, is prime or not, namely.
for the values of u from 0 10 9 inelusive, and for 11, 12, 14, 18, 23,
36, 38, 73. In the first five of these cases, and in thege alongyas F,
Prime. These five cases were noted by Fermat in the segenteenth
centary. It may well turn out that F, is not primesdor » > 4,
although Eisenstein proposed as a problem?!: “Therc':a{re an infinity
of prime numbers of the form 92¢ + 1", S

The results already established in this conngetion may be set
forth in tabular form?.

:.\\.
™ Il Year
"N\ of
# | Prime Factors of Fo=12%41 ® Diseoverer [ Dis-
J jcovery
0-618, 5, 17, 257, 65537 , . . . 5% | Fermen 1648
- | I8 541 = g4y
; 2 1738
5 {2? - 59347 4 3 = 5100417.} """ L. Euler
Unknown but compas{b. ..... Lucas 1878
6 Wesorarti=ararrr N LD Landry 1880
23-5-5256282914%+6?28@421310721 Landry and Le Lasseur 1880
T | Unknown but commosite, . . . , . A. E Weslern, T, C, Morehead| 1905
8 | Unknown but Eompostte. . . . . A, E.Western J.C.Morchead: 1909
9 20937 LadBevangy L A. E. Western 1908
2.3 13 Y- 210459
. 1848
11 {213_ TR 1 = 974849} ..... A, Cunningham )
{21%’%~1 =Ild68% , ., ., . .. E.A . LucagandP.Tervouchine| 1877
12 | 12185397 41 — 26017703 1908
of \-'i' 139 1 1 gaygssa0( - - - - | A B. Western
ot ST 1= 1214951009 . . . . . | a0 mrattenic 1925
AAE R 1341 = 13631489 ., A. E. Western 1803
\}23“ PO st1=16rr7o161 | . P. Pervouchine 1578
90127 541 — ora87r0065047 | Seethoft 1886
ham
38 124,394 = 65970 J. Cuilen, A, Cunning: | 1803
. -+ 189766857 ., , | A.E.and F. T. Western
73 |2 "5+ 1=188894559314785808547841) 7, C. Morehead [ 1908

G Eisenatein, “Anfgaben
* The gources fop the differ
follows, for the 13 different v

» Crelle’s Journal, v. 27, 1844, p. 87.
©nt results, except those of Fermat, are as
aluee of u:
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The labor expended in deriving these results has been enormous;
to the lsyman who knows nothing of congruences in the theory of
pumbers, the facts found must seem almost to border on the mira-
culous. For, even when g = 10, a case not yet solved, F, coniains
309 digits; but when u = 36, F, is a number of more than twenty
trillion digits. Concerning it Luecas remarked! “la bande de papier
qui lo contiendrait ferait le tour de la Terre”. For gy =73, Ball
states that the digits in F, “are so numerous that, if the number/A
were printed in full with the typeand number of pages used in this bodk, 7~/
{Mathematical Reersations, fifth edition, 1811, 508 pages], manymiere

5, L. Buler, Commentarii dcademie Scientiarium Pelrop., v. 0 (D732 —3),
1738, p. 104; Iaid bofore fhe Academy of St. Petersburg, BG\Sept. 1732,

In his autobiography (Springfield, Mass.. 1833, . 88} the American
calewlator Zera Colburn records that ‘while on exhibitiols in London, ab
the age of 8, he found ‘'by the mere operation of hisghind™ the factora 641
and 6, 700, 417 of 4, 294, 967, 297 {= 2** + 1. Cf..\(E.‘D. Mitchell, “Mathe-
matical prodigies”, Amer. Jownal of Psycholeffy,)v. 18, 1907, . 65,

6. Lucas, Comples Rendus de I Adeadémic des Seiences, Paris, v. 85, 1878,
D. 1385 Amer, Jour. Math., v. 1, 1878, p.Z38; Recreations mathématiques,
L i (Ze éd., 1896), p. 284—5. Landcy, Nouv. Corresp, Math., v. 6, 1380,
o417, &Y

%. Independent discoverers: Westorn, Proc. Lond. Math. Soe., 8. 2, 7. 3,
D Txi—xxil. Abstract of paper read, April 13, 1905; Morehead, Bull. Amer.
Math, Boe., v. 11, 1. 543ﬁ_r45§a‘hgtmct of paper read April 29, 1905.

. & Westorn and Morehead, Bull. dmer. Math. 8oc., 7. 16, 1909, 2. 1—86;
each doing half of tha ﬁ\ﬁoié work™,

9, 12 (Western), 13,26, Proc. Lond. Math. Soc., 8 2, v. 1, 1903, ». 175,
abstract of vaper readMay 14, 1903.

11, 4. Cunoingh¥fn, Brif. Assoc. Repi., 1899, p.B53—4; the Tactors
are here given as\319489 and 974489. The second number Is incorrect,
i_and 8 beingJaberchanged. The other forms of the correct factors wera
given by A \Ganningham and A. E. Western in Proc. Lond. Malk. Boc.,
8 2, v. 1,{1903, p. 175. It is here noted also that there aTe no moro factors
of Fu <105, and no other factor of Fpu < 108, (s Dot less than 14).

12528, E. Lucas, Afi dccad. Torino, v. 13 (1877—8), p- 271 [27 Jen.,

984 Melanges math. ast. acad. Pélersh., v. 5, patt 5, 1879, 0.505, 510,
or_Eull. dead. Pélersh., 6. 3, v. 24, 1878, p. 558 8. 3, v- 25, 1879, p. 63;
comununication of results, for u = 12 and 23, found by JF. Pervouchine,
In Nov, 1877 and Jan. 1878. He notes that the integer 92** + 1 containg
2625223 dlgite,

15. M, Rraitohik, Comples Rendus de U deadémic dea Seiences, Parls, v. 180,
D. 800, March, 1925; also Sphine-Oedipe, v- 20, P- 24-

36. P. Seelhotf, Zeitschrift math. u. Phys., v. 31, 1886, p. 174

78 J. C. Morehead, Bull. Amer. Math. Soc., ¥. 12, 1906, D 449—451.

' E.Lucas, Théorie des nombres, Paris, v. 1, 1891, p. 51,
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volumes would be required than are contained in all the publie
Iibraries of the world”.

In not less than seven places!, during the years 1640-58, did
Fermat refer to F, =28 41 as representing a scries of prime
nuembers; but in no place did he claim that ¥, was always prime.

Gauss’s Statement of his Polygon Results, In two passages
the implication to be drawn from what Klein has written is, that
Gauss published a proof that a regular polygon of p sides cah, Tob
be constructed by ruler and compasses if p is a prime notwof the
form 2% 4 1. The passages to which I refer are (paged 2 16):

{1) *“(Gauss added other cases [to Euclid’s] by showify the possi-
bility of the division into parts where p is a prime\humber of the
form p = 22* 4 1, and the impossibility for al)\cther numbers”;
(2} “Gauss extended this serics of numbcrs..@\iclid’s} by showing
that the division is possible for cvery prifoé/number of the form
P = 2% -+ 1 bub impossible for all othar\prime numbers and their
powers”. Now the implication referredvdo above is not correct, as

. Pierpont interestingly set forth in big'paper “On an undemonstrated

theorem of the Disquisitiones Apithimeticae”?, That is, Gauss did nel
give @ proof of the “Impossibility! referred to in the quotations. But
after proving the “possibility described above he continued as follows:

fAS often ag p—1 cant&izm other prime factors besides 2, we arrive
&t higher equations?, 1@3117, to one or moreeuhie equaticnas, if 8 enters

* Lotter dated Ang”(?] 1640 to Freniele (Deuvres de Fermal, v. 2, 1894,
P. 206); letter datel’15 Oct., 1640, to Frenicle (Qeupres, v. 2, 1891, p. 208);
Varig Opera,.Romlonse, 1679, p. 162; Brassine’s Fréeis, Toulouse, 1853,
D. 142—3); Jatter dated 25 Dec., 1618, to Morsenne (Oeuvres, v, 2, D. 212—
218); "D golutione problematum geometriconum per curvas simplicissimes
et unigiidue problematum generl provrie convemicntes, Disscriatio tris
partita™ (Oeutres de Fermat, v. 1, 1891, p. 130—131; French tranalation,
V359896, 0. 120; Veria Opera, 1679 [reprint, 1861], . 115); lotter dated

“28.August, 1654, to Vaseal (Oeuvres de Pascal, v. 4, Paris, 1819, . 384

Geuvres de Fermat, v. 3, 1894, p, 309—319); letter to Sir Kenelm Digby,
sent by Dighy to Wallie, 19 June, 1658 (Qeuvres de Fermas, v. 2, 1894,
p. 402, 404-—5; French translation of the Latin, v. 3, 1896, p. 314, 516);
letber dated August, 1659 to Carcavi, copy scnt by Carcavi fo Huygens
14 August, 1653 (Corresp. de Huygens no. 641; Oeuvres de Fermuf, v. &
D. 433 —434).

* Bull. dmer. Math. Soc., v. 2, 1895, p. 77 —83.

* In hie earlier dlscussion of am inseribed polygon of p sides, Gauss
considers the equation 2 —1 =0 and the resulting equation gob bY
dividing out the factor x — 1, where p i8 & prime.
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onte or oftener as a factor of p—1, to equations of 5th degres if p—1
ig divisible by 4, ete. And wo can prove with all rigour that thess
eguations cannot be aveided or made to depend upon equations of lower
degree; and although the limits of this work do not permit us to give
the demonstration here, we still thought 1§ necessary to pignal this fact
in order thnt one should not seek to construct other polygons than
those given by our theory, as, for ezampie, polygons of 7, 11, 13, 19
gides, and so employ one’® timo in wain” .

Fermat's Theorem. This theorem (p. 17) was indicated by Fers™\
mat in o letter, dated 18 October 1640, to B. Frenicle de Bessy -
(Ceuvres de Ferma:, v. 2, 1894, p. 209). Euler gave two \proots
(Comument. Aced. Petrop., v. 8 for 1736, 1741, p. 141, and ommend.
Nov. Acad. Peirov., v. 7 for 1758-59, 1761, p. 49). @ikér proofs
are due to Lagrange (Nouw. Mdm. de Aced. do Bafin, 17731) and
to Gauss {Disquisitiones Arithmetico, §48)

PART 1 — CHARTER IV

Geometrical Constructions of\fhe Regular Heptadecagon. The
remark of Klein (p. 24, 32) that we posses a8 yet no method of
eonstruction of vhe regularipelygon of seventeen sides, hased upon
considerations purely gebuletrical, is a little curious, ginge several
constructions of thig &d have heen pgiven. One by Erchinger was
indecd reported L-.yf}auss in 1823%. The construction js as follows:

Let D, B, ¢, ), F, C, K be points on a line determined by con-
structions ahompto be given, Let AB be a line of any length. Fro-
duce it hO\tﬁ“\ﬁmya to ¢ and D so thab, '

— | '. —1—1 | ——1—
AN\ B 6 AIF ¢ E
U AC X BC = AB X BD =4 AB%

! Guitingische gelelirte Anzeigen, Dec. 19, 1826, o, 203, p. 20255 Werke,
Y.2,D. 1861, To Art. 365 of the Disquisitiones Arithmeticac Gauss added
this nole in his handwriting: “Circulum in 17 partes divieibilent esee Ze0-
metrice, deteximuas 1796 Mart. 30, Cf. Werke v. 1, 7. 476 and v. 1,
1917, p. 8—4,120-126, 488. The discovery of the result waa firet announced
I the Infelligenzblatt of the -ilgemeine Literalur-Zeitung, no 66, 1 Tunes
1796, col. 554.
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Further determine the points, B, & on both sides of €4 produced
so that,

ABE X BC = AQ X €6 = AP

and find the point F on the side 4 of the line BA produced, such
that '

AF % DF = 4B,

Finally divide AE in  so that (N
AI'X EI = AB x AF, O
where AJ is the smaller, and EJ the larger part of 4 E{ Then con-
#lruct a triangle, in which each of two sides equals{ AB, the third
being equal to A7, About this triangle describe A gircle; then A
will be one side of the regular inseribed polygon Of seventeen sides.
Gauss paricularly vemarks that the auth@r¥ave a purely syn-
thetic proof of this construction. w7

Another synthetic construction and Jprocf dated “Dublin, 174h
October, 1819" was published by Samuel“James in the Transactions
of the Irish Aeademy?, Vet another¢eanstruction was given by John
Lowry in The Mathematical Reppsitbry® for 1819, Bub the earliost
published geometrical construebion was given by Huguenin in his
Mathematische Beitrige zur geiteren Ausbildung ongehender Geometer,
Kénigsherg, 1803, p. 28 A\

A score of geomet, 'cé\’constructions are assembled in A. Golden-
ring, Die eIemeniar‘g]é}neirischm Konstrukiionen des regelmdssigen
Stebzehnecks, Leipzig, 1915, See also the review of this work in
Bull. Amer. Muih. Soc., v. 22, 1918, p- 289—246, and my mnote
“Gauss and .’ofhe"regula,r polygon of seventeen sides™ in Amer. Math.
Monthiy, €327, 1920, p. 395 396,

The, dy%overy that the regular polygon of seventeen sides could
be congtructed with tuler and compasses was not only one of which
,Odtss was vastly prond throughout his life, but also, according to

'\Eirtorius von Waltcrshausena, the one which decided him to dedicate
is life to the study of nmathematies. Archimedes expreszed the wish
that a sphere inscribed in & cylinder be inscribed on his tomb, a8
Ludolf var Ceulen did ig connection with the value of 7 to 35 decimal

P V.13 (1818, P-175—187; paper read Jan. 24, 1820,

*N. 8, V.4, D 160, Lowry’s proof oceupies p, 160 —168.
¥ Gauss zum Gediichiniss, Leipzig, 1856, p. 18,
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places, and Jacques Bernoulli with reference to the logarithmic
spiral. 8o also, according to Welierl, Gauss requested that the
regular polygzon of seventeen sides should be engraved on his tomb-
stone, While this request was not granted, as it was in each of
the other cases mentioned, it is engraved on the side of a monument
to Gauss in Braunschweig, his birthplace.

Constructions in general with Ruler and Compasses. Regarding
constructions as effected when intersections of circles with cireleg™),
or lines, or of lincs with lines may be determined, it can be shewn
that: Every problewm solved weth ruler and compasses can be \solved
with compasses alone. This was first shown by Georg Mol Tn his
Euclides Dandcus published at Amsterdam in 1672; thid &fork was
reprinted in 1928 by the Danish Society of Sciencey. Klein refers
(p. 33) only to Mascheroni’s proof of this resuly 125 years later, in
his Geometria del Compasso. Of thia work thefé}tvere two French
editions Gévuélrie du Compas, Pazis, 1798~aod 1828. From the
first of these a Clerman edition L. Mascherowd's Gebrauch des Zivkels,
BGI‘HII, 1825, Wwas Prepa,red by J. P, GI‘]JSOD The subject is treatgd
in English by: A, Cayley, Messenger ofMdth., v. 14, 1885, p.179—181;
Collected Papers, v, 12, p, 3143174 ’by . W. Hobson, in a presi-
dential nddress, Mathematical Guzette, v. 7, 1913, p. 48—54; by
H.P. Hudson, Ruler & Compdsses, London, 1918, p. 131—-143; and by
J.Coolidge, Treatise on the Cirile and Sphers, Oxford, 1916, p. 186—188.

Klein has noted (p.\S\-iu-S‘i) that Poncelet first conceived the
Tesult that given g.patle and tis cender, every solufion of a problem
with ruler and Pegapasses can be carried through with ruler alone.
A little Iater Kigin states (p. 34) “we will show how with the 815?’359’{“
f!dge and op€ fited circle we can solve every quodralic equation”. This
1 not pagsible; Klein should have had “‘with its center’ after “one
fixed gitele”. That the center be also given is very essential when
figly;bnb circle is given. Hilbert suggested the problem: How many
@iven circles in & plane are necessary in order to determine with
Ttler alone, the center of one of them? In 1912 D. Cauer? showed:
(M twocircles do not intersect in real points it is generally impossible
t0 determine the center of either circle with ruler alone; (b) A center

W1 Breyelopddie der slementaren Algebra und Analysis pearbeitet von H.
oher. 2. ed. Leipzig, 1906, p. 362.
* Mathematische Annalen, v. 13, 1912, p. 00-—94; 7. 74, 1913, D 462484
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may be determined if the civeles cut in real points, touch, or are
concentric. About the same time J. {irossmann dizcovered a rosult
which proved that Every problem solorble with ruler and COMBaLSEs
eans also be solved wilh ruler alone of we are given, i the plane of
conglruclion, three linearly independent cireles. Correct proofs of
this result were given by Schur and Mierendortt, ,

From this it is clear that every construction with ruler and eoh?
passes can be effected with & ruler, and compasses with a{fixéd
opening. Constructions of this kind werc fonnd aircady inghovtenth
century by Abd’l Wefd of Bagdad’. With such moang,\in the siz-
teenth century, certain problems of Kuclid were solyed by Cardano,
Perraro, and Tartaglia. At Venice in 1553 (&, B. Behddetti published
& little treatise, Resolubiv omaium Euelidis prlbaieium, oliorumgue
ad hoe necessarin tnventorum, une lontumedo \verli dafe aperiurs.
In English the topic is treated in a rare Jawiphlet translated from
the Dutch by Joseph Moxon?, and in gmx\ﬁ-tic.le by J. 8. Mackay®.

Every problem whose solution is Eosdible by ruler and compasses
can be also solved with & two edged ruler alone, whether the edgffs
are parallel or meet in a point, For some of the literaturc in this
connection the following sourgls nia,y be eonsulted: Nouvelle Corresp.
Maih., v. 3, 18717, p. 204—208; v. 5, 1879, p. 430—442; v. 6, 1880,
P. 34—35; Akademic de(Wissen., Vienna, Sifzungsberichle, ;‘-th.f.[a,
v. 99, 1890, p. 8548458} Bolletino @i Malematiche ¢ di Seienze fische
€ nalurali, v. 2, 1900~-01, p. 129—145, 225 237.

A

07 PART 11 — CHAPTER I

Irra‘mmality of 7. Xlein wrote (p. 59: “After 1770 etitical rigou;
grfl,g‘ua ¥ began to resume its rightful place, In this year appeare
:t{"‘i work of Lambert: Vorliufige Kenntnisse fisr dic, so die Quadratt!
k LL] » g

! “Woepcke ABalyse ot extrail d'un recueil de constructions goométri
qu:m Par Abhonl Wals, Journal Astatique, 13535, ng how
Con}fpeﬂdium Buelidis Curiost: or, geometrical operations. S }gowtﬂ!?t_ ng
with a s_m,!ﬂe opening of the Compasses and a straight ruler all the propost wo
of BEuchid’s first five boghs are performed. T.ondom, 1677. Moxon does B
of the Dutch treatise was. . ture
s problema, with a ruler and one fixed aper y,r’
b7 the Italian geometers of the sixteenth cembuf
Soe., v, 5, 188%, p, 2—a9,

7N

! “Solutions of el
of the compasses,
Proc, Edinb. Mats,
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... des Cirkuls suchen. Among other mattera the irrationality of n
iz discussed. In 1794 Legendre in his Eldments de Géomitrie showed
ponclusively that ; and n® dre irrational numbers.” The implication
of this note is that Lambert did not discuss the irrationality of «
conclusively and that Legendre did. How both of these points of
view are essentially incorrect will appear in what follows. Klein
was simply reproducing the erroneous statements of Rudio®; bub
after Pringsheim’s careful study in 18982, Lambert’s proof emsrged
as “ausserordentlich scharfsinnig und im wesentlichen vo]lkommqgt\
einwandfrei”, while Legendre’s remained “in Bezug auf Strernge”
hinter Lsmmbert welt zurick’. ~\ by

As in the later proof of the transcendence of v, sgoliare’ whea
its irrationality was in guestion, discussion of e ig Sfurdamental,
The irrationality of ¢ and ¢* was shown, substantially, by Euler in
1737% and he gave the expression for e as a conbiftued fraction on
which Lambert's proofs of the irrationality of ;&*, tan z and s rest,
Starting with Eunler's development* \$

e—1 1 1 1M1

S St . ¥ fe.,
7 T893 SERIS TSI
Lambert found O \
e — 1 1 KM 1 1
PR \ o glc.,
¢+ 1 2/'{3,% 6/¢ + 10/=+ 42+
and sinee P \

1E. Rudio,.’\;{mhimedes, Euygens, Lambert, Legendre, vier Abhgndlungen
iiber die Evélemessung, Leipzig, 1692, p. 562 This error is also reproduced
by B. C%Q"in Enriques's Fragen der Elementargeometrie, 11 Teil, 1907,
P. 2153 hy"D. E. Smith in Younz’s Monographs on Topics of Modern Mathe-
ma{ig?{~;1911, p. 461, The matter was correctly set forth by T. Vahlen in
JEdistrukiionen und Approwimutionen, Leipzig, 1911, D. $19L.

1]

\n‘ﬁ“A' Pringsheim: “Uher dis ersten Bewelee der Irrationalitat von ¢ und

. Bayerischo Akud. der Wissen., Sifzungsberichle, mather.vhys. Cl,

V. 28, 1599, v, 325-337. '
* “De fractionibus continuis”, Cumment. acad. de Pelrop,

D. 108. Pregented to St. Petersburg Academy, March. 1737,

* L, Euler: Tntroductio in nnalysin infinitorym. Tomus Prin::ﬁS, Laa-
Sanmae, 1748, p. 319, This work was finished In 17453 Cf. G Xnestrom,

Verzetichnig ete., Wrate Licferung, p. 25.

v. 9, 1744,
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e —1 oT? — o=
EH1 AR R

1 1 1 1 1
R S
He then proved the theorems

1. If z i3 a rational nwumber different from zero, ¢ can mever b
rational. '

For 2 = 1, we have as &peeial case the irrationality of 1@ N

2. If 2 is a rational number different from zero, fan 2 cavenpvet’ be
rational. \ o

For z = /4, tan w/4 — 1, and hence as a speeial cae the irratio-
nality of x, Qd '

The part of Lambert's Vorliufige Kenninisse td(which Kiein refers
containg gome formulae without proof, and no\analytical develop-
ments, and was rather intended to serve/agve popular survey of
the treatment of the topic. With it moudh e considered the seien-
tfically remarkable “Mémoire” of 1T63:. Hore “mit minuticser
Genauigkeit” Lambert proves th\? ..c.o'nvergence of the GXpresglon
for tan 2 as a continued fraction. Pringsheim dwells on the “astound-
ing” nature of thege considerations at this period in the history of
mathematical thought. Fop| of such considerations Legendre was
innocent, as well ag the great Gauss in his 1812 memoir on hyper-
geometric series, and others, il 5 much later period.

“Thus the Lam eﬁ;”inemoir contains the firsf, and for many
years, the only sgample of what we now consider really rigorous
developments’of. functions ag converging continued fractions, 10
Particular, thebfor tan 2z given above.” .

Measqrement of a Circle. By considering inscribed and clrcum;
seribed (polygons Up to 96 sides Archimedes arrived at the _rﬂﬂul
th&?sﬂil #atio of the circumference of a circle to its diameter is less
o 335 bub greater than 33, The following tab'e exbibits the

A\ Perimeters of regular inscribed and eireumacribed polygons of 2

‘elrdle with a unjs diameter (Chauvenet, Treafise on Elementary
Geometry, Phjladelphia., 1870, p. 161).

x 1 o, iz
= tanh =7 tan 9 if 2 = g

tan z =

T . . B-
' “Mémoire sur Ouelques propriétes remarquables des quantités f;ili‘gnirl
cendantes ciroulalves gf, logarithmiques”. Ly en 1767. Printed io 17

Hisl. de Uocad. royaly geg 8olences ef belles-letfres, Berlin, Année 1761 (1}
. 265—322.
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Number Perimeter of Perimeter of
of sidea cirenmeeribed polygon inscribed polygon
4 4.0000000 2.8284271
8 3.3137085 3.0614675
16 3.1825979 3.1214452
32 3.1517249 3,1365485
64 3,1441184 3.1403312 A
128 3,1422236 3,1412773 RV,
256 3.1417504 3141518 O
512 3.1416321 3.1415729 o~
1024 3.1416025 314168777,
2048 3,1415951 3.1415014, "
40086 3.1415933 3,1415923
8192 3.1415928 ;3{4}5926

W

The remarkable approximation 3658/118Ner = is correct to six
Places of decimals, It seems to have been-first given by a Chinese,
Tou Ch'ung-ching (5th century), and-Jater by Valentin Otho (16th
century) and Adrinen Anthonisz §17th century). Grunert gave a
geometrical construetion for v baged on the fact that 355/113 = 8 +
42 /(72 1 82), Archiv der Mathematik und Physik, v. 12,1849, p. 98.

Another construction wagigiven by Ramanujan in Joumi. Indian
Malh. Soc., v. 5, 19139132 (also in Collected Papers of Srinivasa
Ramanujan, C‘-a,mbridgg, 1927, p. 22, 385).

Q)
Euler's Fo:@‘la. The formula
N\& ol® == cosx 4 ising

was ﬁ‘:?‘ﬁ\glgfen by Ealer in Miscellanea Berolinensia, v. 7, 1'74'3,
P. 179 {paper read 6 Sept. 1742), and again in his Infroductio ¥t
Aralysin, Lausaune, 1748, v. 1, p.104. He gave also

\ )

The equivalent of the form

e 1T = poz ¥ —isin 2.

iz = log {cos = 4 isin 2

was given earlier by Roger Cotes ( Philosophical Transactions, 1714,
V. 29, 1717, p.32) as: Si quadrantis cireuli quilibet arcus, radio
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CE descriptus, sinum habeat CX, sinumque complementi ad qua. .
drantems XE: sumendo radium CZ, pro Modulo, areus erit rationis
inter EX - XC V—1 & CE mensurs ducta in 17 —L" Bee also Cotes,
Harmonta Mensurarum, 1722, p. 28,

PART II — CHAPTER 1V
o\
In the eourse of the discussion on pages 61—74 it ia ass umft’li thit
there are an infirite number of prime numbers, Qne of the neatest
Proofs of this fact was given by Euelid (about 300 B.C.) jd'proposition
20, book 9 of his Elements, LV

On page 77, in considering the relation y =5®y Klein made &
slight slip when he wrote: “To an algebraic yalie of o corresponds
& transcendental value of y, and converselyZ” “Conversely” leads
to the statement, to s transcendental Yalue of y corresponds an
algebraic value of z, But a proof of thi? has nowhere been given;
indeed the result is not true, in general, To correct delete “con-

versely” and add: “To an algebraigtvalue of y corresponds a transcen-
dental value of z.” ™

)
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